In this letter a new skeletonization algorithm is proposed. It combines techniques of fast construction of Euclidean Distance Maps(EDMs), ridge extraction, Hit-or-Miss Transformation(HMT) of structuring elements and t...In this letter a new skeletonization algorithm is proposed. It combines techniques of fast construction of Euclidean Distance Maps(EDMs), ridge extraction, Hit-or-Miss Transformation(HMT) of structuring elements and the set operators. It first produces the EDM image with no more than 4 passes through an image of any kinds, and then the ridge image is extracted by applying a turn-on scheme and performing a rain-fall elimination to accelerate the processing. The one-pixel wide skeleton is finally acquired by carrying out the HMTs of two structure elements and the SUBTRACT and OR operations. Experimental results obtained by practical applications are also presented.展开更多
In this paper, we propose a simpleyet-effective method for isotropic meshing relying on Euclidean distance transformation based centroidal Voronoi tessellation(CVT). Our approach improves the performance and robustnes...In this paper, we propose a simpleyet-effective method for isotropic meshing relying on Euclidean distance transformation based centroidal Voronoi tessellation(CVT). Our approach improves the performance and robustness of computing CVT on curved domains while simultaneously providing highquality output meshes. While conventional extrinsic methods compute CVTs in the entire volume bounded by the input model, we restrict the computation to a 3D shell of user-controlled thickness. Taking voxels which contain surface samples as sites, we compute the exact Euclidean distance transform on the GPU. Our algorithm is parallel and memory-efficient,and can construct the shell space for resolutions up to 20483 at interactive speed. The 3D centroidal Voronoi tessellation and restricted Voronoi diagrams are also computed efficiently on the GPU. Since the shell space can bridge holes and gaps smaller than a certain tolerance, and tolerate non-manifold edges and degenerate triangles, our algorithm can handle models with such defects, which typically cause conventional remeshing methods to fail. Our method can process implicit surfaces, polyhedral surfaces, and point clouds in a unified framework. Computational results show that our GPU-based isotropic meshing algorithm produces results comparable to state-ofthe-art techniques, but is significantly faster than conventional CPU-based implementations.展开更多
文摘In this letter a new skeletonization algorithm is proposed. It combines techniques of fast construction of Euclidean Distance Maps(EDMs), ridge extraction, Hit-or-Miss Transformation(HMT) of structuring elements and the set operators. It first produces the EDM image with no more than 4 passes through an image of any kinds, and then the ridge image is extracted by applying a turn-on scheme and performing a rain-fall elimination to accelerate the processing. The one-pixel wide skeleton is finally acquired by carrying out the HMTs of two structure elements and the SUBTRACT and OR operations. Experimental results obtained by practical applications are also presented.
基金partially supported by Ac RF RG40/12MOE2013-T2-2-011+2 种基金partially supported by National Natural Science Foundation of China (Nos. 61432003 and 61322206)the TNList Cross-discipline Foundationpartially supported by HKSAR Research Grants Council (RGC) General Research Fund (GRF), CUHK/14207414
文摘In this paper, we propose a simpleyet-effective method for isotropic meshing relying on Euclidean distance transformation based centroidal Voronoi tessellation(CVT). Our approach improves the performance and robustness of computing CVT on curved domains while simultaneously providing highquality output meshes. While conventional extrinsic methods compute CVTs in the entire volume bounded by the input model, we restrict the computation to a 3D shell of user-controlled thickness. Taking voxels which contain surface samples as sites, we compute the exact Euclidean distance transform on the GPU. Our algorithm is parallel and memory-efficient,and can construct the shell space for resolutions up to 20483 at interactive speed. The 3D centroidal Voronoi tessellation and restricted Voronoi diagrams are also computed efficiently on the GPU. Since the shell space can bridge holes and gaps smaller than a certain tolerance, and tolerate non-manifold edges and degenerate triangles, our algorithm can handle models with such defects, which typically cause conventional remeshing methods to fail. Our method can process implicit surfaces, polyhedral surfaces, and point clouds in a unified framework. Computational results show that our GPU-based isotropic meshing algorithm produces results comparable to state-ofthe-art techniques, but is significantly faster than conventional CPU-based implementations.