Supported Pd/VSiO catalyst and Ag/SiO 2 TiO 2/K M composite ceramic membrane tube have been prepared. Membrane catalytic reaction of C 2H 6 oxydehydrogenation to ethene by carbon dioxide has been investigated, and the...Supported Pd/VSiO catalyst and Ag/SiO 2 TiO 2/K M composite ceramic membrane tube have been prepared. Membrane catalytic reaction of C 2H 6 oxydehydrogenation to ethene by carbon dioxide has been investigated, and thermodynamic property and kinetic regulation of the inorganic membrane catalytic reaction have been discussed to supply some experimental bases to optimize the membrane reactor design and the operation of the inorganic membrane reaction.展开更多
This paper reports observations of significant synergistic effects between dielectric barrier discharge (DBD) plasmas and Cu-ZSM-5 catalysts for C2H4 selective reduction of NOx at 250 °C in the presence of excess...This paper reports observations of significant synergistic effects between dielectric barrier discharge (DBD) plasmas and Cu-ZSM-5 catalysts for C2H4 selective reduction of NOx at 250 °C in the presence of excess oxygen by using a one-stage plasma-over-catalyst (POC) reactor. With the reactant gas mixture of 530 ppm NO, 650 ppm C2H4, 5.8% O2 in N2 and GHSV = 12000 h-1, the pure catalytic, pure plasma-induced (discharges over fused silica pellets) and plasma- catalytic (in the POC reactor) NOx conversion are 39%, 1.5% and 79%, respectively. The in-situ optical emission spectra of the reactive systems imply some short-lived active species formed from plasma-induced and plasma-catalytic processes may be responsible to the observed synergistic effects in this one-stage POC system.展开更多
This review is concerned with the mechanisms controlling fruit softening.Master genetic regulators switch on the ripening programme and the regulatory pathway branches downstream,with separate controls for distinct qu...This review is concerned with the mechanisms controlling fruit softening.Master genetic regulators switch on the ripening programme and the regulatory pathway branches downstream,with separate controls for distinct quality attributes such as colour,flavour,texture,and aroma.Ethylene plays a critical role as a ripening hormone and is implicated in controlling different facets of ripening,including texture change,acting through a range of transcriptional regulators,and this signalling can be blocked using 1-methylcyclopropene.A battery of at least seven cell-wall-modifying enzymes,most of which are synthesized de novo during ripening,cause major alterations in the structure and composition of the cell wall components and contribute to the softening process.Significant differences between fruits may be related to the precise structure and composition of their cell walls and the enzymes recruited to the ripening programme during evolution.Attempts to slow texture change and reduce fruit spoilage by delaying the entire ripening process can often affect negatively other aspects of quality,and low temperatures,in particular,can have deleterious effects on texture change.Gene silencing has been used to probe the function of individual genes involved in different aspects of ripening,including colour,flavour,ethylene synthesis,and particularly texture change.The picture that emerges is that softening is a multi-genic trait,with some genes making a more important contribution than others.In future,it may be possible to control texture genetically to produce fruits more suitable for our needs.展开更多
文摘Supported Pd/VSiO catalyst and Ag/SiO 2 TiO 2/K M composite ceramic membrane tube have been prepared. Membrane catalytic reaction of C 2H 6 oxydehydrogenation to ethene by carbon dioxide has been investigated, and thermodynamic property and kinetic regulation of the inorganic membrane catalytic reaction have been discussed to supply some experimental bases to optimize the membrane reactor design and the operation of the inorganic membrane reaction.
基金supported by the National Natural Science Foundation of China(Grant No.20077005)the National High Technology Research and Development Program("863 Programm”)of China(Grant No.2002AA649140)the Provincial Grants of Science and Technology of Liaoning,China(No.20022112).
文摘This paper reports observations of significant synergistic effects between dielectric barrier discharge (DBD) plasmas and Cu-ZSM-5 catalysts for C2H4 selective reduction of NOx at 250 °C in the presence of excess oxygen by using a one-stage plasma-over-catalyst (POC) reactor. With the reactant gas mixture of 530 ppm NO, 650 ppm C2H4, 5.8% O2 in N2 and GHSV = 12000 h-1, the pure catalytic, pure plasma-induced (discharges over fused silica pellets) and plasma- catalytic (in the POC reactor) NOx conversion are 39%, 1.5% and 79%, respectively. The in-situ optical emission spectra of the reactive systems imply some short-lived active species formed from plasma-induced and plasma-catalytic processes may be responsible to the observed synergistic effects in this one-stage POC system.
文摘This review is concerned with the mechanisms controlling fruit softening.Master genetic regulators switch on the ripening programme and the regulatory pathway branches downstream,with separate controls for distinct quality attributes such as colour,flavour,texture,and aroma.Ethylene plays a critical role as a ripening hormone and is implicated in controlling different facets of ripening,including texture change,acting through a range of transcriptional regulators,and this signalling can be blocked using 1-methylcyclopropene.A battery of at least seven cell-wall-modifying enzymes,most of which are synthesized de novo during ripening,cause major alterations in the structure and composition of the cell wall components and contribute to the softening process.Significant differences between fruits may be related to the precise structure and composition of their cell walls and the enzymes recruited to the ripening programme during evolution.Attempts to slow texture change and reduce fruit spoilage by delaying the entire ripening process can often affect negatively other aspects of quality,and low temperatures,in particular,can have deleterious effects on texture change.Gene silencing has been used to probe the function of individual genes involved in different aspects of ripening,including colour,flavour,ethylene synthesis,and particularly texture change.The picture that emerges is that softening is a multi-genic trait,with some genes making a more important contribution than others.In future,it may be possible to control texture genetically to produce fruits more suitable for our needs.