Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developmen...Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developments in the estimation of vehicle dynamic states. The definitions used in vehicle dynamic state estimation are first introduced, and alternative estimation structures are presented. Then, the sensor configuration schemes used to estimate vehicle velocity, sideslip angle, yaw rate and roll angle are presented. The vehicle models used for vehicle dynamic state estimation are further summarized, and representative estimation approaches are discussed. Future concerns and perspectives for vehicle dynamic state estimation are also discussed.展开更多
This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance de...This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance degradation and are inapplicable.We develop a fixedinterval smoothing method based on forward-and backward-filtering in the Variable Structure Multiple Model(VSMM)framework in this paper.We propose to use the Simplified Equivalent model Interacting Multiple Model(SEIMM)in the forward and the backward filters to handle the difficulty of different mode-sets used in both filters,and design a re-filtering procedure in the model-switching stage to enhance the estimation performance.To improve the computational efficiency,we make the basic model-set adaptive by the Likely-Model Set(LMS)algorithm.It turns out that the smoothing performance is further improved by the LMS due to less competition among models.Simulation results are provided to demonstrate the better performance and the computational efficiency of our proposed smoothing algorithms.展开更多
基金supported by the National Natural Science Foundation of China(61403158,61520106008)the Project of the Education Department of Jilin Province(2016-429)
文摘Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developments in the estimation of vehicle dynamic states. The definitions used in vehicle dynamic state estimation are first introduced, and alternative estimation structures are presented. Then, the sensor configuration schemes used to estimate vehicle velocity, sideslip angle, yaw rate and roll angle are presented. The vehicle models used for vehicle dynamic state estimation are further summarized, and representative estimation approaches are discussed. Future concerns and perspectives for vehicle dynamic state estimation are also discussed.
基金supported in part by the National Natural Science Foundation of China(No.61773306)the National Key Research and Development Plan,China(Nos.2021YFC2202600 and 2021YFC2202603)。
文摘This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance degradation and are inapplicable.We develop a fixedinterval smoothing method based on forward-and backward-filtering in the Variable Structure Multiple Model(VSMM)framework in this paper.We propose to use the Simplified Equivalent model Interacting Multiple Model(SEIMM)in the forward and the backward filters to handle the difficulty of different mode-sets used in both filters,and design a re-filtering procedure in the model-switching stage to enhance the estimation performance.To improve the computational efficiency,we make the basic model-set adaptive by the Likely-Model Set(LMS)algorithm.It turns out that the smoothing performance is further improved by the LMS due to less competition among models.Simulation results are provided to demonstrate the better performance and the computational efficiency of our proposed smoothing algorithms.