An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
In this paper, we study the superconvergence of the error for the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when the alternating flux is used. We prove t...In this paper, we study the superconvergence of the error for the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when the alternating flux is used. We prove that if we apply piecewise k-th degree polynomials, the error between the LDG solution and the exact solution is (k + 2)-th order superconvergent at the Radau points with suitable initial discretization. Moreover, we also prove the LDG solution is (k + 2)-th order superconvergent for the error to a particular projection of the exact solution. Even though we only consider periodic boundary condition, this boundary condition is not essential, since we do not use Fourier analysis. Our analysis is valid for arbitrary regular meshes and for P^k polynomials with arbitrary k ≥ 1. We perform numerical experiments to demonstrate that the superconvergence rates proved in this paper are sharp.展开更多
Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence erro...Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence error estimates; Error estimates of convergence and superconvergence for the time-continuous finite element method; Details of the global superconvergence for the semi-discrete scheme.展开更多
The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
In this paper we study Galerkin approximations to the solution of the nonlinearSobolev equation c(u)u_t=▽·{a(u)▽u_t+b(u)▽u}+f(u)in two spatial dimensions and deriveoptimal L^2 error estimates for the continuou...In this paper we study Galerkin approximations to the solution of the nonlinearSobolev equation c(u)u_t=▽·{a(u)▽u_t+b(u)▽u}+f(u)in two spatial dimensions and deriveoptimal L^2 error estimates for the continuous-time,Crank-Nicolson and extrapolated Crank-Nicolson discrete-time approximations.展开更多
In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sy...In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sylvester algebraic opera- tors that are shown to be invertible using original topological and differential calculus issued methods. The numerical scheme is proved to be consistent, convergent and sta- ble using the Lyapunov criterion, lax equivalence theorem and the properties of the generalized Lyapunov-Sylvester operators.展开更多
In this paper, a Fourier-Chebyshev pseudospectral scheme with mixed filtering is proposed for three-dimensional vorticity equation. The generalized stability and convergence are proved. The numerical results show the ...In this paper, a Fourier-Chebyshev pseudospectral scheme with mixed filtering is proposed for three-dimensional vorticity equation. The generalized stability and convergence are proved. The numerical results show the advantages of this method.展开更多
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is use...In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is used to study the asymptotic behaviour of Kuramoto-Sivashinsky equation and to construct the bifurcation diagrams.展开更多
We investigate time domain boundary element methods for the wave equation in R3, with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equa...We investigate time domain boundary element methods for the wave equation in R3, with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equation for the hypersingular operator, and we present a priori and a posteriori error estimates for conforming Galerkin approxima- tions in the more general case of a screen. Numerical experiments validate the convergence of our boundary element scheme and compare it with the numerical approximations ob- tained from an integral equation of the second kind. Computations in a half-space illustrate the influence of the reflection properties of a flat street.展开更多
The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution ...The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved.展开更多
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that ...This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.展开更多
A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension...A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in L_2-norm, can be directly computed with the solutions of the mixed schemes without any additional cost, and are proven to be reliable. Local efficiency dependent on local variations in coefficients is obtained without any saturation assumption, and holds from the cases where convection or reaction is not present to convection- or reaction-dominated problems. The main tools of the analysis are the postprocessed approximation of scalar displacement, abstract error estimates, and the property of modified Oswald interpolation. Numerical experiments are carried out to support our theoretical results and to show the competitive behavior of the proposed posteriori error estimates.展开更多
In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explai...In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.展开更多
In this article, two block-centered finite difference schemes are introduced and analyzed to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in porous media. One scheme is Euler ...In this article, two block-centered finite difference schemes are introduced and analyzed to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in porous media. One scheme is Euler backward scheme with first order accuracy in time increment while the other is Crank-Nicolson scheme with second order accuracy in time increment. Stability analysis and second-order error estimates in spatial meshsize for both pressure and velocity in discrete L^2 norms are established on non-uniform rectangular grid. Numerical experiments using the schemes show that the convergence rates are in agreement with the theoretical analysis.展开更多
The object of this paper is to establish the relation between stability and convergence of the numerical methods for the evolution equation u(t) - Au - f(u) = g(t) on Banach space V, and to prove the long-time error e...The object of this paper is to establish the relation between stability and convergence of the numerical methods for the evolution equation u(t) - Au - f(u) = g(t) on Banach space V, and to prove the long-time error estimates for the approximation solutions. At first, we give the definition of long-time stability, and then prove the fact that stability and compatibility imply the uniform convergence on the infinite time region. Thus, we establish a general frame in order to prove the long-time convergence. This frame includes finite element methods and finite difference methods of the evolution equations, especially the semilinear parabolic and hyperbolic partial differential equations. As applications of these results we prove the estimates obtained by Larsson [5] and Sanz-serna and Stuart [6].展开更多
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘In this paper, we study the superconvergence of the error for the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when the alternating flux is used. We prove that if we apply piecewise k-th degree polynomials, the error between the LDG solution and the exact solution is (k + 2)-th order superconvergent at the Radau points with suitable initial discretization. Moreover, we also prove the LDG solution is (k + 2)-th order superconvergent for the error to a particular projection of the exact solution. Even though we only consider periodic boundary condition, this boundary condition is not essential, since we do not use Fourier analysis. Our analysis is valid for arbitrary regular meshes and for P^k polynomials with arbitrary k ≥ 1. We perform numerical experiments to demonstrate that the superconvergence rates proved in this paper are sharp.
基金This work is supported in part by NSERC (Canada)Chinese National key Basic Research Special Fund (No. G1998020322)SRF for ROCS, SEM.
文摘Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence error estimates; Error estimates of convergence and superconvergence for the time-continuous finite element method; Details of the global superconvergence for the semi-discrete scheme.
文摘The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
文摘In this paper we study Galerkin approximations to the solution of the nonlinearSobolev equation c(u)u_t=▽·{a(u)▽u_t+b(u)▽u}+f(u)in two spatial dimensions and deriveoptimal L^2 error estimates for the continuous-time,Crank-Nicolson and extrapolated Crank-Nicolson discrete-time approximations.
文摘In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sylvester algebraic opera- tors that are shown to be invertible using original topological and differential calculus issued methods. The numerical scheme is proved to be consistent, convergent and sta- ble using the Lyapunov criterion, lax equivalence theorem and the properties of the generalized Lyapunov-Sylvester operators.
文摘In this paper, a Fourier-Chebyshev pseudospectral scheme with mixed filtering is proposed for three-dimensional vorticity equation. The generalized stability and convergence are proved. The numerical results show the advantages of this method.
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
文摘In this paper,the uniform error estimates with respect to t∈[0, ∞ ) of the nonlinear Galerkin method are given for the long time integration of the Kuramoto-Sivashinsky equation. The nonlinear Galerkin method is used to study the asymptotic behaviour of Kuramoto-Sivashinsky equation and to construct the bifurcation diagrams.
文摘We investigate time domain boundary element methods for the wave equation in R3, with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equation for the hypersingular operator, and we present a priori and a posteriori error estimates for conforming Galerkin approxima- tions in the more general case of a screen. Numerical experiments validate the convergence of our boundary element scheme and compare it with the numerical approximations ob- tained from an integral equation of the second kind. Computations in a half-space illustrate the influence of the reflection properties of a flat street.
基金This work was supported by the National Science Foundation of China(10271034)
文摘The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved.
基金the NSF grants DMS-0410266 and DMS-0710831the China National Basic Research Program under the grant 2005CB321701+1 种基金the Program for the New Century Outstanding Talents in Universities of Chinathe Natural Science Foundation of Jiangsu Province under the grant BK2006511
文摘This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.
基金The authors are grateful for the anonymous referees for their helpful com- ments. This work was supported in part by The Education Science Foundation of Chongqing (KJ120420), National Natural Science Foundation of China (11171239), The Project-sponsored by Scientific Research Foundation for the Returned Overseas Chinese Scholars and Open Fund of Key Laboratory of Mountain Hazards and Earth Surface Processes, CAS.
文摘A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in L_2-norm, can be directly computed with the solutions of the mixed schemes without any additional cost, and are proven to be reliable. Local efficiency dependent on local variations in coefficients is obtained without any saturation assumption, and holds from the cases where convection or reaction is not present to convection- or reaction-dominated problems. The main tools of the analysis are the postprocessed approximation of scalar displacement, abstract error estimates, and the property of modified Oswald interpolation. Numerical experiments are carried out to support our theoretical results and to show the competitive behavior of the proposed posteriori error estimates.
基金Supported by the National Natural Science Foundation of China(Grant No.11471253 and No.11571311)
文摘In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.
基金This work is supported by the National Natural Science Foundation of China Grant no. 11671233, 91330106.
文摘In this article, two block-centered finite difference schemes are introduced and analyzed to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in porous media. One scheme is Euler backward scheme with first order accuracy in time increment while the other is Crank-Nicolson scheme with second order accuracy in time increment. Stability analysis and second-order error estimates in spatial meshsize for both pressure and velocity in discrete L^2 norms are established on non-uniform rectangular grid. Numerical experiments using the schemes show that the convergence rates are in agreement with the theoretical analysis.
文摘The object of this paper is to establish the relation between stability and convergence of the numerical methods for the evolution equation u(t) - Au - f(u) = g(t) on Banach space V, and to prove the long-time error estimates for the approximation solutions. At first, we give the definition of long-time stability, and then prove the fact that stability and compatibility imply the uniform convergence on the infinite time region. Thus, we establish a general frame in order to prove the long-time convergence. This frame includes finite element methods and finite difference methods of the evolution equations, especially the semilinear parabolic and hyperbolic partial differential equations. As applications of these results we prove the estimates obtained by Larsson [5] and Sanz-serna and Stuart [6].