Pure and Er-doped In 2O 3 nanotubes were systematically fabricated by using a single nozzle eletrospinning method followed by calcination.The as-synthesized nanotubes were characterized by scanning electron microscopy...Pure and Er-doped In 2O 3 nanotubes were systematically fabricated by using a single nozzle eletrospinning method followed by calcination.The as-synthesized nanotubes were characterized by scanning electron microscopy(SEM),energy-dispersive X-ray(EDX) spectrometry and X-ray powder diffraction(XRD).Compared with pure In 2O 3 nanotubes,Er-doped In 2O 3 nanotubes exhibit improved formaldehyde sensing properties at 260 ℃.The response of Er-doped In 2O 3 nanotubes to 20 ppm formaldehyde is about 12,which is 4 times larger than that of pure In 2O 3 nanotubes.The response and recovery times of Er-doped In 2O 3 nanotubes to 20 ppm formaldehyde are about 5 and 38 s,respectively.Furthermore,the response of Er-doped In 2O 3 nanotubes to 100 ppb formaldehyde is 2.19.展开更多
Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave fr...Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency.As a result,the length unit“meter”is directly related to the time unit“second”.This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region.Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequencydoubling scheme.The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633,698,729,780,1064,and 1542 nm is better than 30 d B.The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10^(-13)at 1-s averaging time.The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylenestabilized 1542-nm laser.The results are within the uncertainty range of the international recommended values.Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb,which is not only important for the precise and accurate traceability and calibration of the laser frequencies,but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.展开更多
976 nm+1976 nm dual-wavelength pumped Er-doped ZBLAN fiber lasers are generally accepted as the preferred solution for achieving 3.5μm lasing.However,the 2μm band excited state absorption from the upper lasing level...976 nm+1976 nm dual-wavelength pumped Er-doped ZBLAN fiber lasers are generally accepted as the preferred solution for achieving 3.5μm lasing.However,the 2μm band excited state absorption from the upper lasing level(^(4 )F_(9/2)→^(4)F_(7/2))depletes the Er ions population inversion,reducing the pump quantum efciency and limiting the power scaling.In this work,we demonstrate that the pump quantum efciency can be efectively improved by using a long-wavelength pump with lower excited state absorption rate.A 3.5μm Er-doped ZBLAN fber laser was built and its performances at diferent pump wavelengths were experimentally investigated in detail.A maximum output power at 3.46μm of~7.2 W with slope efciency(with respect to absorbed 1990 nm pump power)of 41.2%was obtained with an optimized pump wavelength of 1990 nm,and the pump quantum efciency was increased to 0.957 compared with the 0.819 for the conventional 1976 nm pumping scheme.Further power scaling was only limited by the available 1990 nm pump power.A numerical simulation was implemented to evaluate the cross section of excited state absorption via a theoretical ftting of experimental results.The potential of further power scaling was also discussed,based on the developed model.展开更多
In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the d...In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the disordered FBG array. The disordered FBG array performs as both the gain medium and random distributed reflectors, which together with a tunable point reflector form the RFL. Coherent multi-mode random lasing is obtained with a threshold of between 7.5 and 10 mW and a power efficiency between 23% and 27% when the reflectivity of the point reflector changes from 4% to 50%. To control the lasing mode of random emission, a specific point of the disordered FBG array is heated so as to shift the wavelength of the FBG(s) at this point away from the other FBGs.Thus, different resonance cavities are formed, and the lasing mode can be controlled by changing the location of the heating point.展开更多
A novel method, sputtering K9 glass film, is proposed to solve the surface corrosion of Er-doped phosphate glass during ion-exchange processing for optical waveguide fabrication. The corrosion causes are analyzed to b...A novel method, sputtering K9 glass film, is proposed to solve the surface corrosion of Er-doped phosphate glass during ion-exchange processing for optical waveguide fabrication. The corrosion causes are analyzed to be the intrinsically weak stabilization of phosphate glass structure, hydrophile and weakly acidic property of phosphate radical. Experimental results show that the K9 glass film could not only protect the Er-doped phosphate glass surface from being corroded but also give no influence on the waveguide fabrication. The effect of thickness of K9 glass film on the optical property of waveguide is also investigated and the op- timal thickness is found to be 60―80 nm. It provides a good base for further fabri- cation of active phosphate glass optical waveguide devices.展开更多
The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced at...The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation (RIA) self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation (RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current, double-pass backward (DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested. The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to 200 krad (Si) gamma-ray irradiation.展开更多
We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber l...We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber laser.The key technique is the employment of two innovative high-power wavelength domain multiplexer collimators with all gain fiber cavity suited for the high power(up to 2 W) pumping. The laser is featured with a direct chirpfree output pulse, which is 97 fs without extracavity compression at an average output power of 90 mW.展开更多
We propose a Q-switched Er-doped fiber laser (EDFL) with a threshold pumping power as low as 7.4 mW, and demonstrate using graphene polyvinyl alcohol (PVA) thin film as a passive saturable absorber (SA). The SA ...We propose a Q-switched Er-doped fiber laser (EDFL) with a threshold pumping power as low as 7.4 mW, and demonstrate using graphene polyvinyl alcohol (PVA) thin film as a passive saturable absorber (SA). The SA is fabricated from graphene flakes, which is synthesized by electrochemical exfoliation of graphite at room temperature in 1% sodium dodecyl sulfate aqueous solution. The flakes are mixed with PVA solution to produce a thin film, which is then sandwiched between two ferrules to form a SA and integrated in the EDFL ring cavity to generate a stable Q-switched pulse train. The pulse train operates at 1560 nm with a threshold pump power of 7.4 roW. At maximum 1480 nm pump power of 33.0 roW, the EDFL generates an optical pulse train with a repetition rate of 27.0 kHz and pulse width of 3.56/as. The maximum pulse energy of 39.4 nJ is obtained at a pump power of 14.9 roW. This laser can be used as a simple and low-cost light source for metrology, environmental sensing, and biomedical diagnostics.展开更多
To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperature...To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperatures.We optimize the structure of the ASE source to flatten the ASE spectrum, and study the output characteristics in terms of output power and optical spectrum under different pump powers. Then the performance of the ASE source is investigated in the temperature range from-18.9°C to 50°C. A stable-power and flat-spectrum ASE source can be obtained by structural optimization and pump control.展开更多
Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is ...Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is based on dynamic scanning for fixed-point-interference (DSFPI) of two fiber beams. The real part and complex value of the third-order susceptibility at the wavelength are also obtained from the measured Kerr coefficient and nonlinear-absorption coefficient reported elsewhere.展开更多
We report here a high-power, wavelength tunable and narrow linewidth 1.5 μm all-fiber laser amplifier based on a tunable diode laser and Er-Yb co-doped fibers. The laser wavelength can be precisely tuned from 1535 nm...We report here a high-power, wavelength tunable and narrow linewidth 1.5 μm all-fiber laser amplifier based on a tunable diode laser and Er-Yb co-doped fibers. The laser wavelength can be precisely tuned from 1535 nm to 1580 nm, which covers many absorption lines of mid-infrared laser gases, such as C2 H2, HCN, CO, and HI. The maximum laser power is >11 W, and the linewidth is about 200–300 MHz, which is close to the absorption linewidth of the above-mentioned gases. This work provides a suitable pump source for high-power wavelength tunable mid-infrared fiber gas lasers based on low-loss hollow-core fibers.展开更多
We demonstrate here an environmentally stable and extremely compactable Er-doped fiber laser system capable of delivering sub-100-fs temporal duration and tens of nanojoules at a repetition rate of 10 MHz.This laser s...We demonstrate here an environmentally stable and extremely compactable Er-doped fiber laser system capable of delivering sub-100-fs temporal duration and tens of nanojoules at a repetition rate of 10 MHz.This laser source employs a semiconductor saturable absorber mirror mode-locked soliton laser to generate seed pulses.A singlemode-fiber amplifier and a double-cladding-fiber amplifier(both with double-pass configuration)are bridged by a divider and used to manage the dispersion map and boost the soliton pulses.By using 64 replicas,pulses with as high as 60 n J energy within 95 fs duration are obtained at 10 MHz,corresponding to 600 kW peak power.展开更多
We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161...We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.展开更多
Using transmission electron microscopy (TEM) and x-ray diffraction analysis, we have studied the structural and morphological evolution of highly Er/Yb co-doped A1203 films in the temperature range from 600℃-900℃....Using transmission electron microscopy (TEM) and x-ray diffraction analysis, we have studied the structural and morphological evolution of highly Er/Yb co-doped A1203 films in the temperature range from 600℃-900℃. By comparison with TEM observation, the annealing behaviours of photoluminescence (PL) emission and optical loss were found to have relation to the structure and morphology. The increase of PL intensity and optical loss above 800℃ might result from the crystallization of amorphous Al2O3 films. Based on the study on the structure and morphology, a rate equation propagation model of a multilevel system was used to calculate the optical gains of Er-doped Al2O3 planar waveguide amplifiers involving the variation of PL efficiency and optical loss with annealing temperature. It was found that the amplifiers had an optimized optical gain at the temperature corresponding to the minimum of optical loss, rather than at the temperature corresponding to the maximum of PL efficiency, suggesting that the optical loss is a key factor for determining the optical gain of an Er-doped Al2O3 planar waveguide amplifier.展开更多
The laser and amplifiers based on RE-doped fiber have been paid much attention to. Recently, fiber superfluorescence- the amplified spontaneous emission (ASE)began to receive more interest. As a broadband source, the ...The laser and amplifiers based on RE-doped fiber have been paid much attention to. Recently, fiber superfluorescence- the amplified spontaneous emission (ASE)began to receive more interest. As a broadband source, the superfluorescence is needed in many fiber sensor applications, in particular the fiber gyroscopes and some signal-processing fiber systems. Owing to the high gain in RE-doped fiber, significant superfluorescence power展开更多
The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optic...The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optical fiber loop resonators may be used to make an all-optical fiber bistabillty device.The configuration,charecterictics and threshold of verious Er-doped fiber loop bistability devices have been calculated,analysised, and compared, and the design principle of those devices has been given.展开更多
基金supported by the Jilin Provincial Science and Technology Department (No.20140204027GX)
文摘Pure and Er-doped In 2O 3 nanotubes were systematically fabricated by using a single nozzle eletrospinning method followed by calcination.The as-synthesized nanotubes were characterized by scanning electron microscopy(SEM),energy-dispersive X-ray(EDX) spectrometry and X-ray powder diffraction(XRD).Compared with pure In 2O 3 nanotubes,Er-doped In 2O 3 nanotubes exhibit improved formaldehyde sensing properties at 260 ℃.The response of Er-doped In 2O 3 nanotubes to 20 ppm formaldehyde is about 12,which is 4 times larger than that of pure In 2O 3 nanotubes.The response and recovery times of Er-doped In 2O 3 nanotubes to 20 ppm formaldehyde are about 5 and 38 s,respectively.Furthermore,the response of Er-doped In 2O 3 nanotubes to 100 ppb formaldehyde is 2.19.
基金the National Key Research and Development Program of China(Grant No.2016YFF0200204)。
文摘Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency.As a result,the length unit“meter”is directly related to the time unit“second”.This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region.Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequencydoubling scheme.The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633,698,729,780,1064,and 1542 nm is better than 30 d B.The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10^(-13)at 1-s averaging time.The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylenestabilized 1542-nm laser.The results are within the uncertainty range of the international recommended values.Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb,which is not only important for the precise and accurate traceability and calibration of the laser frequencies,but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105240,62075159,61975146,and 62275190)Shandong Province Key R&D Program(Nos.2020CXGC010104 and 2021CXGC010202)Seed Foundation of Tianjin University(No.2023XPD-0020).
文摘976 nm+1976 nm dual-wavelength pumped Er-doped ZBLAN fiber lasers are generally accepted as the preferred solution for achieving 3.5μm lasing.However,the 2μm band excited state absorption from the upper lasing level(^(4 )F_(9/2)→^(4)F_(7/2))depletes the Er ions population inversion,reducing the pump quantum efciency and limiting the power scaling.In this work,we demonstrate that the pump quantum efciency can be efectively improved by using a long-wavelength pump with lower excited state absorption rate.A 3.5μm Er-doped ZBLAN fber laser was built and its performances at diferent pump wavelengths were experimentally investigated in detail.A maximum output power at 3.46μm of~7.2 W with slope efciency(with respect to absorbed 1990 nm pump power)of 41.2%was obtained with an optimized pump wavelength of 1990 nm,and the pump quantum efciency was increased to 0.957 compared with the 0.819 for the conventional 1976 nm pumping scheme.Further power scaling was only limited by the available 1990 nm pump power.A numerical simulation was implemented to evaluate the cross section of excited state absorption via a theoretical ftting of experimental results.The potential of further power scaling was also discussed,based on the developed model.
基金supported in part by the National Natural Science Foundation of China under Grants 61575040 and 61106045the PCSIRT under Grant IRT1218+1 种基金the 111 Project under Grant B14039the open research fund of Jiangsu Key Laboratory for Advanced Optical Manufacturing Technologies under Grant KJS1402
文摘In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the disordered FBG array. The disordered FBG array performs as both the gain medium and random distributed reflectors, which together with a tunable point reflector form the RFL. Coherent multi-mode random lasing is obtained with a threshold of between 7.5 and 10 mW and a power efficiency between 23% and 27% when the reflectivity of the point reflector changes from 4% to 50%. To control the lasing mode of random emission, a specific point of the disordered FBG array is heated so as to shift the wavelength of the FBG(s) at this point away from the other FBGs.Thus, different resonance cavities are formed, and the lasing mode can be controlled by changing the location of the heating point.
基金the Optical Science and Technology Foundation of Shanghai Technology Committee (Grant No. 022261009)the Young Teacher Cultivation Foundation of Dalian University of Technology (Grant No. 893210)the Doctor Startup Foundation of Dalian University of Tech-nology (Grant No. 893322)
文摘A novel method, sputtering K9 glass film, is proposed to solve the surface corrosion of Er-doped phosphate glass during ion-exchange processing for optical waveguide fabrication. The corrosion causes are analyzed to be the intrinsically weak stabilization of phosphate glass structure, hydrophile and weakly acidic property of phosphate radical. Experimental results show that the K9 glass film could not only protect the Er-doped phosphate glass surface from being corroded but also give no influence on the waveguide fabrication. The effect of thickness of K9 glass film on the optical property of waveguide is also investigated and the op- timal thickness is found to be 60―80 nm. It provides a good base for further fabri- cation of active phosphate glass optical waveguide devices.
基金supported by the Special Fund for Development of National Major Scientific Instruments of China(Grant No.2013YQ04081504)the Program for Innovative Research Team in University,China(Grant No.IRT 1203)
文摘The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation (RIA) self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation (RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current, double-pass backward (DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested. The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to 200 krad (Si) gamma-ray irradiation.
基金supported by the Major National Basic Research Program of China (2013CB922401)the National Natural Science Foundation of China (60927010, 10974006, and 11027404)
文摘We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber laser.The key technique is the employment of two innovative high-power wavelength domain multiplexer collimators with all gain fiber cavity suited for the high power(up to 2 W) pumping. The laser is featured with a direct chirpfree output pulse, which is 97 fs without extracavity compression at an average output power of 90 mW.
基金financially supported by the Ministry of Education and the University of Malaya under Grant Nos.ER012-2013A and RP008D-13AET
文摘We propose a Q-switched Er-doped fiber laser (EDFL) with a threshold pumping power as low as 7.4 mW, and demonstrate using graphene polyvinyl alcohol (PVA) thin film as a passive saturable absorber (SA). The SA is fabricated from graphene flakes, which is synthesized by electrochemical exfoliation of graphite at room temperature in 1% sodium dodecyl sulfate aqueous solution. The flakes are mixed with PVA solution to produce a thin film, which is then sandwiched between two ferrules to form a SA and integrated in the EDFL ring cavity to generate a stable Q-switched pulse train. The pulse train operates at 1560 nm with a threshold pump power of 7.4 roW. At maximum 1480 nm pump power of 33.0 roW, the EDFL generates an optical pulse train with a repetition rate of 27.0 kHz and pulse width of 3.56/as. The maximum pulse energy of 39.4 nJ is obtained at a pump power of 14.9 roW. This laser can be used as a simple and low-cost light source for metrology, environmental sensing, and biomedical diagnostics.
基金Supported by the National Natural Science Foundation of China under Grant No 11504320
文摘To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperatures.We optimize the structure of the ASE source to flatten the ASE spectrum, and study the output characteristics in terms of output power and optical spectrum under different pump powers. Then the performance of the ASE source is investigated in the temperature range from-18.9°C to 50°C. A stable-power and flat-spectrum ASE source can be obtained by structural optimization and pump control.
文摘Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is based on dynamic scanning for fixed-point-interference (DSFPI) of two fiber beams. The real part and complex value of the third-order susceptibility at the wavelength are also obtained from the measured Kerr coefficient and nonlinear-absorption coefficient reported elsewhere.
基金supported by the National Natural Science Foundation of China(No.11274385)
文摘We report here a high-power, wavelength tunable and narrow linewidth 1.5 μm all-fiber laser amplifier based on a tunable diode laser and Er-Yb co-doped fibers. The laser wavelength can be precisely tuned from 1535 nm to 1580 nm, which covers many absorption lines of mid-infrared laser gases, such as C2 H2, HCN, CO, and HI. The maximum laser power is >11 W, and the linewidth is about 200–300 MHz, which is close to the absorption linewidth of the above-mentioned gases. This work provides a suitable pump source for high-power wavelength tunable mid-infrared fiber gas lasers based on low-loss hollow-core fibers.
基金supported by the National Key R&D Program of China(No.2018YFB0407100)
文摘We demonstrate here an environmentally stable and extremely compactable Er-doped fiber laser system capable of delivering sub-100-fs temporal duration and tens of nanojoules at a repetition rate of 10 MHz.This laser source employs a semiconductor saturable absorber mirror mode-locked soliton laser to generate seed pulses.A singlemode-fiber amplifier and a double-cladding-fiber amplifier(both with double-pass configuration)are bridged by a divider and used to manage the dispersion map and boost the soliton pulses.By using 64 replicas,pulses with as high as 60 n J energy within 95 fs duration are obtained at 10 MHz,corresponding to 600 kW peak power.
基金Japan Science and Technology Agency(JST)Japan Agency for Medical Research and Development(AMED)
文摘We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.
基金Project supported by the National Natural Science Foundation of China (Grant No 50240420656).
文摘Using transmission electron microscopy (TEM) and x-ray diffraction analysis, we have studied the structural and morphological evolution of highly Er/Yb co-doped A1203 films in the temperature range from 600℃-900℃. By comparison with TEM observation, the annealing behaviours of photoluminescence (PL) emission and optical loss were found to have relation to the structure and morphology. The increase of PL intensity and optical loss above 800℃ might result from the crystallization of amorphous Al2O3 films. Based on the study on the structure and morphology, a rate equation propagation model of a multilevel system was used to calculate the optical gains of Er-doped Al2O3 planar waveguide amplifiers involving the variation of PL efficiency and optical loss with annealing temperature. It was found that the amplifiers had an optimized optical gain at the temperature corresponding to the minimum of optical loss, rather than at the temperature corresponding to the maximum of PL efficiency, suggesting that the optical loss is a key factor for determining the optical gain of an Er-doped Al2O3 planar waveguide amplifier.
文摘The laser and amplifiers based on RE-doped fiber have been paid much attention to. Recently, fiber superfluorescence- the amplified spontaneous emission (ASE)began to receive more interest. As a broadband source, the superfluorescence is needed in many fiber sensor applications, in particular the fiber gyroscopes and some signal-processing fiber systems. Owing to the high gain in RE-doped fiber, significant superfluorescence power
文摘The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optical fiber loop resonators may be used to make an all-optical fiber bistabillty device.The configuration,charecterictics and threshold of verious Er-doped fiber loop bistability devices have been calculated,analysised, and compared, and the design principle of those devices has been given.