In this paper, we prove when these x ∈ <em>l</em><sub>2</sub> with <img src="Edit_f19f1285-6d80-48bb-b69d-6d6112f13051.bmp" alt="" /> , they have the common <em>...In this paper, we prove when these x ∈ <em>l</em><sub>2</sub> with <img src="Edit_f19f1285-6d80-48bb-b69d-6d6112f13051.bmp" alt="" /> , they have the common <em>δ</em> for strongly ball proximinal. By using this property, we can prove the strong ball proximinality of <em>l</em><span style="white-space:nowrap;"><sub>∞</sub></span>(<em>l</em><sub>2</sub>). Also, we show that equable subspace <em>Y</em> of a Banach space <em>X</em> is actually uniform ball proximinality.展开更多
文摘In this paper, we prove when these x ∈ <em>l</em><sub>2</sub> with <img src="Edit_f19f1285-6d80-48bb-b69d-6d6112f13051.bmp" alt="" /> , they have the common <em>δ</em> for strongly ball proximinal. By using this property, we can prove the strong ball proximinality of <em>l</em><span style="white-space:nowrap;"><sub>∞</sub></span>(<em>l</em><sub>2</sub>). Also, we show that equable subspace <em>Y</em> of a Banach space <em>X</em> is actually uniform ball proximinality.