Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an ...Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia;however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion(pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions(based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities(based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory 展开更多
The purpose of this study was to evaluate the roles of different housing environments in neurological function, cerebral metabolism, cerebral infarction and neuron apoptosis after focal cerebral ischemia. Twenty-eight...The purpose of this study was to evaluate the roles of different housing environments in neurological function, cerebral metabolism, cerebral infarction and neuron apoptosis after focal cerebral ischemia. Twenty-eight Sprague-Dawley rats were divided into control group (CG) and cerebral ischemia group, and the latter was further divided into subgroups of different housing conditions: standard environment (SE) subgroup, individual living environment (IE) subgroup, and enriched environment (EE) subgroup. Focal cerebral ischemia was induced by the middle cerebral artery occlusion (MCAO). Beam walking test was used to quantify the changes of overall motor function. Cerebral infarction and cerebral metabolism were studied by in vivo magnetic resonance imaging and 1H-magnetic resonance spectra, respectively. Neuron necrosis and apoptosis were detected by hematoxylin-eosin and TUNEL staining methods, respectively. The results showed that performance on the beam-walk test was improved in EE subgroup when compared to SE subgroup and IE subgroup. Cerebral infarct volume in IE subgroup was significantly larger than that in SE subgroup (P〈0.05) and EE subgroup (P〈0.05) on day 14 after MCAO. NAA/Cr and Cho/Cr ratios were lower in MCAO groups under different housing conditions as compared to those in CG (P〈0.05). NAA/Cr ratio was lower in IE subgroup (P〈0.05) and higher in EE subgroup (P〈0.05) than that in SE subgroup. NAA/ Cr ratio in EE was significantly higher than that in IE subgroup (P〈0.05). Cho/Cr ratio was decreased in MCAO groups as compared to that in CG (P〈0.05). A significant decrease in normal neurons in cerebral cortex was observed in MCAO groups as compared to CG (P〈0.05). The amount of normal neurons was less in IE subgroup (P〈0.05), and more in EE subgroup (P〈0.05) than that in SE subgroup after MCAO. The amotmt of normal neurons in EE subgroup was significantly more than that in IE subgroup after MCAO (P〈0.05). The ratio o展开更多
Aging is a dynamic and progressive process that begins at conception and continues until death.This process leads to a decrease in homeostasis and morphological,biochemical and psychological changes,increasing the ind...Aging is a dynamic and progressive process that begins at conception and continues until death.This process leads to a decrease in homeostasis and morphological,biochemical and psychological changes,increasing the individual’s vulnerability to various diseases.The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases,impairment of the central nervous system and dementias,such as Alzheimer’s disease,whose main risk factor is age,leading to an increase of the number of individuals who need daily support for life activities.Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species,which leads to inflammation,oxidation,cell membrane damage and consequently neuronal death.Also,mitochondrial mutations,which are generated throughout the aging process,can lead to changes in energy production,deficiencies in electron transport and apoptosis induction that can result in decreased function.Additionally,increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells.Recent reports point to the importance of changing lifestyle by increasing physical exercise,improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms.Therefore,this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81601961(to KWY),81672242(to YW)the Key Construction Projects of Shanghai Health and Family Planning on Weak Discipline,China,No.2015ZB0401(to YW)
文摘Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia;however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion(pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions(based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities(based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory
文摘The purpose of this study was to evaluate the roles of different housing environments in neurological function, cerebral metabolism, cerebral infarction and neuron apoptosis after focal cerebral ischemia. Twenty-eight Sprague-Dawley rats were divided into control group (CG) and cerebral ischemia group, and the latter was further divided into subgroups of different housing conditions: standard environment (SE) subgroup, individual living environment (IE) subgroup, and enriched environment (EE) subgroup. Focal cerebral ischemia was induced by the middle cerebral artery occlusion (MCAO). Beam walking test was used to quantify the changes of overall motor function. Cerebral infarction and cerebral metabolism were studied by in vivo magnetic resonance imaging and 1H-magnetic resonance spectra, respectively. Neuron necrosis and apoptosis were detected by hematoxylin-eosin and TUNEL staining methods, respectively. The results showed that performance on the beam-walk test was improved in EE subgroup when compared to SE subgroup and IE subgroup. Cerebral infarct volume in IE subgroup was significantly larger than that in SE subgroup (P〈0.05) and EE subgroup (P〈0.05) on day 14 after MCAO. NAA/Cr and Cho/Cr ratios were lower in MCAO groups under different housing conditions as compared to those in CG (P〈0.05). NAA/Cr ratio was lower in IE subgroup (P〈0.05) and higher in EE subgroup (P〈0.05) than that in SE subgroup. NAA/ Cr ratio in EE was significantly higher than that in IE subgroup (P〈0.05). Cho/Cr ratio was decreased in MCAO groups as compared to that in CG (P〈0.05). A significant decrease in normal neurons in cerebral cortex was observed in MCAO groups as compared to CG (P〈0.05). The amount of normal neurons was less in IE subgroup (P〈0.05), and more in EE subgroup (P〈0.05) than that in SE subgroup after MCAO. The amotmt of normal neurons in EE subgroup was significantly more than that in IE subgroup after MCAO (P〈0.05). The ratio o
基金MT received studentship from Sao Paulo Research Foundation(2017/21655-6)HSB was a Brazilian National Council for Scientific and Technological Development researcher(425838/2016-1,307252/2017-5)This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil(CAPES)–Finance Code 001 and FAPESP(2016/07115-6).
文摘Aging is a dynamic and progressive process that begins at conception and continues until death.This process leads to a decrease in homeostasis and morphological,biochemical and psychological changes,increasing the individual’s vulnerability to various diseases.The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases,impairment of the central nervous system and dementias,such as Alzheimer’s disease,whose main risk factor is age,leading to an increase of the number of individuals who need daily support for life activities.Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species,which leads to inflammation,oxidation,cell membrane damage and consequently neuronal death.Also,mitochondrial mutations,which are generated throughout the aging process,can lead to changes in energy production,deficiencies in electron transport and apoptosis induction that can result in decreased function.Additionally,increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells.Recent reports point to the importance of changing lifestyle by increasing physical exercise,improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms.Therefore,this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.