In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the b...In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.展开更多
The major advantages of homogeneous charge compression ignition (HCCI) are high efficiency in combination with low NOx-emissions. However, one of the major challenges with HCCI is the control of higher peak pressure...The major advantages of homogeneous charge compression ignition (HCCI) are high efficiency in combination with low NOx-emissions. However, one of the major challenges with HCCI is the control of higher peak pressures which may damage the engine, limiting the HCCI engine life period. In this paper, an attempt is made to analyze computationally the effect of induction swirl in controlling the peak pressures of an HCCI engine under various operating parameters. A single cylinder 1.6 L reentrant piston bowl diesel engine is chosen. For computational analysis, the ECFM-3Z model of STAR - CD is considered because it is suitable for analyzing the combustion processes in SI and CI engines. As an HCCI engine is a hybrid version of SI and CI engines, the ECFM- 3Z model with necessary modifications is used to analyze the peak pressures inside the combustion chamber. The ECFM-3Z model for HCCI mode of combustion is validated with the existing literature to make sure that the results obtained are accurate. Numerical experiments are performed to study the effect of varying properties like speed of the engine, piston bowl geometry, exhaust gas recirculation (EGR) and equivalence ratio under different swirl ratios in controlling the peak pressures inside the combustion chamber. The results show that the swirl ratio has a considerable impact on controlling the peak pressures of HCCI engine. A reduction in peak pressures are observed with a swirl ratio of 4 because of reduced in cylinder temperatures. The combined effect of four operating parameters, i.e., the speed of the engine, piston bowl geometry, EGR, and equivalence ratio with swirl ratios suggest that lower intake temperatures, reentrant piston bowl, higher engine speeds and higher swirl ratios are favorable in controlling the peak pressures.展开更多
文摘In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.
文摘The major advantages of homogeneous charge compression ignition (HCCI) are high efficiency in combination with low NOx-emissions. However, one of the major challenges with HCCI is the control of higher peak pressures which may damage the engine, limiting the HCCI engine life period. In this paper, an attempt is made to analyze computationally the effect of induction swirl in controlling the peak pressures of an HCCI engine under various operating parameters. A single cylinder 1.6 L reentrant piston bowl diesel engine is chosen. For computational analysis, the ECFM-3Z model of STAR - CD is considered because it is suitable for analyzing the combustion processes in SI and CI engines. As an HCCI engine is a hybrid version of SI and CI engines, the ECFM- 3Z model with necessary modifications is used to analyze the peak pressures inside the combustion chamber. The ECFM-3Z model for HCCI mode of combustion is validated with the existing literature to make sure that the results obtained are accurate. Numerical experiments are performed to study the effect of varying properties like speed of the engine, piston bowl geometry, exhaust gas recirculation (EGR) and equivalence ratio under different swirl ratios in controlling the peak pressures inside the combustion chamber. The results show that the swirl ratio has a considerable impact on controlling the peak pressures of HCCI engine. A reduction in peak pressures are observed with a swirl ratio of 4 because of reduced in cylinder temperatures. The combined effect of four operating parameters, i.e., the speed of the engine, piston bowl geometry, EGR, and equivalence ratio with swirl ratios suggest that lower intake temperatures, reentrant piston bowl, higher engine speeds and higher swirl ratios are favorable in controlling the peak pressures.