Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hin...Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hinders the rational design and synthesis of high-performance hard carbon anode materials for practical SIBs.During the past decades,tremendous efforts have been put to stimulate the development of hard carbon materials.In this review,we discuss the recent progress of the study on the sodium storage mechanism of hard carbon anodes,and the effective strategies to improve their sodium storage performance have been summarized.It is anticipated that hard carbon anodes with high electrochemical properties will be inspired and fabricated for large-scale energy storage applications.展开更多
Biphasic and multiphasic compounds have been well clarified to achieve extraordinary electrochemical properties as advanced energy storage materials.Yet the role of phase boundaries in improving the performance is rem...Biphasic and multiphasic compounds have been well clarified to achieve extraordinary electrochemical properties as advanced energy storage materials.Yet the role of phase boundaries in improving the performance is remained to be illustrated.Herein,we reported the biphasic vanadate,that is,Na_(1.2)V_(3)O_(8)/K_(2)V_(6)O_(16)·1.5H_(2)O(designated as Na0.5K0.5VO),and detected the novel interfacial adsorption-insertion mechanism induced by phase boundaries.Firstprinciples calculations indicated that large amount of Zn^(2+)and H^(+)ions would be absorbed by the phase boundaries and most of them would insert into the host structure,which not only promote the specific capacity,but also effectively reduce diffusion energy barrier toward faster reaction kinetics.Driven by this advanced interfacial adsorption-insertion mechanism,the aqueous Zn/Na_(0.5)K_(0.5)VO is able to perform excellent rate capability as well as long-term cycling performance.A stable capacity of 267 mA h g^(-1)after 800 cycles at 5 A g^(-1)can be achieved.The discovery of this mechanism is beneficial to understand the performance enhancement mechanism of biphasic and multiphasic compounds as well as pave pathway for the strategic design of highperformance energy storage materials.展开更多
Aqueous rechargeable Zn/MnO2 zinc-ion batteries(ZIBs)are reviving recently due to their low cost,non-toxicity,and natural abundance.However,their energy storage mechanism remains controversial due to their complicated...Aqueous rechargeable Zn/MnO2 zinc-ion batteries(ZIBs)are reviving recently due to their low cost,non-toxicity,and natural abundance.However,their energy storage mechanism remains controversial due to their complicated electrochemical reactions.Meanwhile,to achieve satisfactory cyclic stability and rate performance of the Zn/MnO2 ZIBs,Mn2+ is introduced in the electrolyte(e.g.,ZnSO4 solution),which leads to more complicated reactions inside the ZIBs systems.Herein,based on comprehensive analysis methods including electrochemical analysis and Pourbaix diagram,we provide novel insights into the energy storage mechanism of Zn/MnO2 batteries in the presence of Mn2+.A complex series of electrochemical reactions with the coparticipation of Zn2+,H+,Mn2+,SO42-,and OH-were revealed.During the first discharge process,co-insertion of Zn2+ and H+ promotes the transformation of MnO2 into ZnxMnO4,MnOOH,and Mn2O3,accompanying with increased electrolyte pH and the formation of ZnSO4·3 Zn(OH)2-5 H2O.During the subsequent charge process,ZnxMnO4,MnOOH,and Mn2O3 revert to a-MnO2 with the extraction of Zn2+ and H+,while ZnSO4·3Zn(OH)2·5H2O reacts with Mn2+ to form ZnMn3O7·3 H2O.In the following charge/discharge processes,besides aforementioned electrochemical reactions,Zn2+ reversibly insert into/extract from α-MnO2,ZnxMnO4,and ZnMn3O7·3H2O hosts;ZnSO4·3Zn(OH)2·5 H2O,Zn2Mn3O8,and ZnMn2O4 convert mutually with the participation of Mn2+.This work is believed to provide theoretical guidance for further research on high-performance ZIBs.展开更多
Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the com...Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the commercial lithium ion batteries.However,the disputed energy storage mechanism has been a confusing issue restraining the development of ZIBs.Although a lot of efforts have been dedicated to the exploration in battery chemistry,a comprehensive review that focuses on summarizing the energy storage mechanisms of ZIBs is needed.Herein,the energy storage mechanisms of aqueous rechargeable ZIBs are systematically reviewed in detail and summarized as four types,which are traditional Zn^(2+)insertion chemistry,dual ions co-insertion,chemical conversion reaction and coordination reaction of Zn^(2+)with organic cathodes.Furthermore,the promising exploration directions and rational prospects are also proposed in this review.展开更多
基金Key Research Program of Hubei Province,Grant/Award Number:2020BAA030National Nature Science Foundation of China,Grant/Award Number:U20A20249 and 21972108。
文摘Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hinders the rational design and synthesis of high-performance hard carbon anode materials for practical SIBs.During the past decades,tremendous efforts have been put to stimulate the development of hard carbon materials.In this review,we discuss the recent progress of the study on the sodium storage mechanism of hard carbon anodes,and the effective strategies to improve their sodium storage performance have been summarized.It is anticipated that hard carbon anodes with high electrochemical properties will be inspired and fabricated for large-scale energy storage applications.
基金National Natural Science Foundation of China,Grant/Award Numbers:51932011,51802356,51972346Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,Grant/Award Number:CSUZC202003+1 种基金Innovation-Driven Project of Central South University,Grant/Award Number:2020CX024Program of Youth Talent Support for Hunan Province,Grant/Award Number:2020RC3011。
文摘Biphasic and multiphasic compounds have been well clarified to achieve extraordinary electrochemical properties as advanced energy storage materials.Yet the role of phase boundaries in improving the performance is remained to be illustrated.Herein,we reported the biphasic vanadate,that is,Na_(1.2)V_(3)O_(8)/K_(2)V_(6)O_(16)·1.5H_(2)O(designated as Na0.5K0.5VO),and detected the novel interfacial adsorption-insertion mechanism induced by phase boundaries.Firstprinciples calculations indicated that large amount of Zn^(2+)and H^(+)ions would be absorbed by the phase boundaries and most of them would insert into the host structure,which not only promote the specific capacity,but also effectively reduce diffusion energy barrier toward faster reaction kinetics.Driven by this advanced interfacial adsorption-insertion mechanism,the aqueous Zn/Na_(0.5)K_(0.5)VO is able to perform excellent rate capability as well as long-term cycling performance.A stable capacity of 267 mA h g^(-1)after 800 cycles at 5 A g^(-1)can be achieved.The discovery of this mechanism is beneficial to understand the performance enhancement mechanism of biphasic and multiphasic compounds as well as pave pathway for the strategic design of highperformance energy storage materials.
基金the financial support from the International Science & Technology Cooperation Program of China (No. 2016YFE0102200)Shenzhen Technical Plan Project (No. JCYJ20160301154114273)+1 种基金National Key Basic Research(973) Program of China (No. 2014CB932400)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111)
文摘Aqueous rechargeable Zn/MnO2 zinc-ion batteries(ZIBs)are reviving recently due to their low cost,non-toxicity,and natural abundance.However,their energy storage mechanism remains controversial due to their complicated electrochemical reactions.Meanwhile,to achieve satisfactory cyclic stability and rate performance of the Zn/MnO2 ZIBs,Mn2+ is introduced in the electrolyte(e.g.,ZnSO4 solution),which leads to more complicated reactions inside the ZIBs systems.Herein,based on comprehensive analysis methods including electrochemical analysis and Pourbaix diagram,we provide novel insights into the energy storage mechanism of Zn/MnO2 batteries in the presence of Mn2+.A complex series of electrochemical reactions with the coparticipation of Zn2+,H+,Mn2+,SO42-,and OH-were revealed.During the first discharge process,co-insertion of Zn2+ and H+ promotes the transformation of MnO2 into ZnxMnO4,MnOOH,and Mn2O3,accompanying with increased electrolyte pH and the formation of ZnSO4·3 Zn(OH)2-5 H2O.During the subsequent charge process,ZnxMnO4,MnOOH,and Mn2O3 revert to a-MnO2 with the extraction of Zn2+ and H+,while ZnSO4·3Zn(OH)2·5H2O reacts with Mn2+ to form ZnMn3O7·3 H2O.In the following charge/discharge processes,besides aforementioned electrochemical reactions,Zn2+ reversibly insert into/extract from α-MnO2,ZnxMnO4,and ZnMn3O7·3H2O hosts;ZnSO4·3Zn(OH)2·5 H2O,Zn2Mn3O8,and ZnMn2O4 convert mutually with the participation of Mn2+.This work is believed to provide theoretical guidance for further research on high-performance ZIBs.
基金supported by the National Natural Science Foundation of China(21571080)。
文摘Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the commercial lithium ion batteries.However,the disputed energy storage mechanism has been a confusing issue restraining the development of ZIBs.Although a lot of efforts have been dedicated to the exploration in battery chemistry,a comprehensive review that focuses on summarizing the energy storage mechanisms of ZIBs is needed.Herein,the energy storage mechanisms of aqueous rechargeable ZIBs are systematically reviewed in detail and summarized as four types,which are traditional Zn^(2+)insertion chemistry,dual ions co-insertion,chemical conversion reaction and coordination reaction of Zn^(2+)with organic cathodes.Furthermore,the promising exploration directions and rational prospects are also proposed in this review.