Microsoft Office是使用最为广泛的办公软件,Office文件的安全性主要是通过对Office文件进行加密来实现的。尽管自Office97发布以来,Microsoft公司对Office办公软件的文件加密功能进行了不断改进,但是,Office加密文件的安全性仍然难以...Microsoft Office是使用最为广泛的办公软件,Office文件的安全性主要是通过对Office文件进行加密来实现的。尽管自Office97发布以来,Microsoft公司对Office办公软件的文件加密功能进行了不断改进,但是,Office加密文件的安全性仍然难以保证。通过对Office文件加/解密过程进行分析,提出了存在的攻击,同时分析了各版本Office所采用的具体加/解密算法,设计了破解实验,得出了实验测试数据,并以时间代价为指标,对Office加密文件是否安全进行了详细的论证。展开更多
This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measu...This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(62273087,61933007,62273088,U21A2019,62073180)the Shanghai Pujiang Program of China(22PJ1400400)+3 种基金the Program of Shanghai Academic/Technology Research Leader of China(20XD1420100)the European Union’s Horizon 2020 Research and Innovation Programme(820776)(INTEGRADDE)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany.
文摘This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme.