本文采用基于WRFDA的集合-变分混合同化系统(En3DVAR)在云尺度分辨率下同化了雷达观测资料考察其对登陆台风"桑美"的影响。高时空分辨率的雷达径向风资料在台风登陆前的3h同化窗内以每30min的频率同化进WRF模式(Weather Resea...本文采用基于WRFDA的集合-变分混合同化系统(En3DVAR)在云尺度分辨率下同化了雷达观测资料考察其对登陆台风"桑美"的影响。高时空分辨率的雷达径向风资料在台风登陆前的3h同化窗内以每30min的频率同化进WRF模式(Weather Research and Forecasting)。研究结果表明:En3DVAR试验在3h同化窗内的均方根误差相比3DVAR试验改进显著,这可能得益于混合同化系统中提供的"流依赖"的集合协方差信息。系统性的诊断分析表明En3DVAR试验在台风内核区产生了较为明显正温度增量,对台风内核区的热力和动力结构均有较好调整,而3DVAR则在台风内核区产生了负温度增量;相比3DAVR试验,En3DVAR在采用了"流依赖"的集合协方差信息后还可以对背景场上的台风的位置进行系统性的偏差订正。总体而言,En3DVAR试验预报的台风路径和强度相比3DVAR改进显著,其正效果主要来源于混合背景误差协方差中的"流依赖"集合协方差信息。展开更多
基于WRF模式构建了Hybrid En SRF-En3DVar同化系统,该系统使用En SRF方案直接更新集合扰动。利用构建的同化系统针对台风"桑美"分别进行集合协方差权重敏感性试验和同化雷达不同观测资料的敏感性试验。集合协方差权重敏感性...基于WRF模式构建了Hybrid En SRF-En3DVar同化系统,该系统使用En SRF方案直接更新集合扰动。利用构建的同化系统针对台风"桑美"分别进行集合协方差权重敏感性试验和同化雷达不同观测资料的敏感性试验。集合协方差权重敏感性试验发现:当集合协方差权重分别为0.25、0.5和0.75时,同化效果优于3DVar试验,其中0.75的集合协方差权重试验得到了分析场的最优估计;当集合协方差权重为1.0时,分析场最差。同化雷达不同观测资料的敏感性试验表明,联合同化雷达径向风及反射率能有效改善大气湿度场和风场,但对风场的改善效果不如仅同化雷达径向风好。将En SRF集合扰动更新方案与扰动观测方案综合分析发现,扰动观测方案集合离散度较小,计算代价大,En SRF方案优于扰动观测方案。展开更多
Land surface models are often highly nonlinear with model physics that contain parameterized discontinuities. These model attributes severely limit the application of advanced variational data assimilation methods int...Land surface models are often highly nonlinear with model physics that contain parameterized discontinuities. These model attributes severely limit the application of advanced variational data assimilation methods into land data assimilation. The ensemble Kalman filter (EnKF) has been widely employed for land data assimilation because of its simple conceptual formulation and relative ease of implementation. An updated ensemble-based three-dimensional variational assimilation (En3-DVar) method is proposed for land data assimilation.This new method incorporates Monte Carlo sampling strategies into the 3-D variational data assimilation framework. The proper orthogonal decomposition (POD) technique is used to efficiently approximate a forecast ensemble produced by the Monte Carlo method in a 3-D space that uses a set of base vectors that span the ensemble. The data assimilation process is thus significantly simplified. Our assimilation experiments indicate that this new En3-DVar method considerably outperforms the EnKF method by increasing assimilation precision. Furthermore, computational costs for the new En3-DVar method are much lower than for the EnKF method.展开更多
文摘本文采用基于WRFDA的集合-变分混合同化系统(En3DVAR)在云尺度分辨率下同化了雷达观测资料考察其对登陆台风"桑美"的影响。高时空分辨率的雷达径向风资料在台风登陆前的3h同化窗内以每30min的频率同化进WRF模式(Weather Research and Forecasting)。研究结果表明:En3DVAR试验在3h同化窗内的均方根误差相比3DVAR试验改进显著,这可能得益于混合同化系统中提供的"流依赖"的集合协方差信息。系统性的诊断分析表明En3DVAR试验在台风内核区产生了较为明显正温度增量,对台风内核区的热力和动力结构均有较好调整,而3DVAR则在台风内核区产生了负温度增量;相比3DAVR试验,En3DVAR在采用了"流依赖"的集合协方差信息后还可以对背景场上的台风的位置进行系统性的偏差订正。总体而言,En3DVAR试验预报的台风路径和强度相比3DVAR改进显著,其正效果主要来源于混合背景误差协方差中的"流依赖"集合协方差信息。
基金supported by the National Natural Science Foundation of China (Grant No. 40705035)the National High Technology Research and Development Program of China (863 Program) (Grant Nos. 2009AA12Z129 and 2007AA12Z144)
文摘Land surface models are often highly nonlinear with model physics that contain parameterized discontinuities. These model attributes severely limit the application of advanced variational data assimilation methods into land data assimilation. The ensemble Kalman filter (EnKF) has been widely employed for land data assimilation because of its simple conceptual formulation and relative ease of implementation. An updated ensemble-based three-dimensional variational assimilation (En3-DVar) method is proposed for land data assimilation.This new method incorporates Monte Carlo sampling strategies into the 3-D variational data assimilation framework. The proper orthogonal decomposition (POD) technique is used to efficiently approximate a forecast ensemble produced by the Monte Carlo method in a 3-D space that uses a set of base vectors that span the ensemble. The data assimilation process is thus significantly simplified. Our assimilation experiments indicate that this new En3-DVar method considerably outperforms the EnKF method by increasing assimilation precision. Furthermore, computational costs for the new En3-DVar method are much lower than for the EnKF method.