期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
基于生理信号的情感计算研究综述 被引量:37
1
作者 权学良 曾志刚 +3 位作者 蒋建华 张亚倩 吕宝粮 伍冬睿 《自动化学报》 EI CAS CSCD 北大核心 2021年第8期1769-1784,共16页
情感计算是现代人机交互中的一个重要研究方向,旨在研究与开发能够识别、解释、处理和模拟人类情感的理论、方法与系统.脑电、心电、皮肤电等生理信号是情感计算中重要的输入信号.本文总结了近年来基于脑电等生理信号的情感计算研究所... 情感计算是现代人机交互中的一个重要研究方向,旨在研究与开发能够识别、解释、处理和模拟人类情感的理论、方法与系统.脑电、心电、皮肤电等生理信号是情感计算中重要的输入信号.本文总结了近年来基于脑电等生理信号的情感计算研究所取得的进展.首先介绍情感计算的相关基础理论,不同生理信号与情感变化之间的联系,以及基于生理信号的情感计算工作流程和相关公开数据集.接下来介绍生理信号的特征工程和情感计算中的机器学习算法,重点介绍适合处理个体差异的迁移学习、降低数据标注量的主动学习和融合特征工程与学习器的深度学习算法.最后,指出基于生理信号的情感计算研究中面临的一些挑战. 展开更多
关键词 情感计算 情绪分类 脑机接口 机器学习
下载PDF
语音信号的情感特征分析与识别研究综述 被引量:27
2
作者 余伶俐 蔡自兴 陈明义 《电路与系统学报》 CSCD 北大核心 2007年第4期76-84,共9页
语音情感的分析与识别是近年来新兴研究课题之一,本文介绍了近几年来国内外语音情感识别的状况,阐述了各种人类情感分类的方法,归纳了各种语音特征参数的提取方法以及各特征参数对情感识别的意义,在此基础上综述了国内外在情感识别领域... 语音情感的分析与识别是近年来新兴研究课题之一,本文介绍了近几年来国内外语音情感识别的状况,阐述了各种人类情感分类的方法,归纳了各种语音特征参数的提取方法以及各特征参数对情感识别的意义,在此基础上综述了国内外在情感识别领域的研究进展与主要识别建模方法,同时总结了各种识别建模方法的利弊。最后概括了语音情感识别领域的发展趋势,并进行了展望。 展开更多
关键词 语音情感 情感分类 特征参数 识别方法
下载PDF
脑电信号情绪识别研究综述 被引量:24
3
作者 王忠民 赵玉鹏 +3 位作者 郑镕林 贺炎 张嘉雯 刘洋 《计算机科学与探索》 CSCD 北大核心 2022年第4期760-774,共15页
情绪识别是指通过人的面部表情、行为动作或者生理信号等信息识别人的情绪状态,其成果在医疗辅助、教育、交通安全等方面有很大的应用价值。由于脑电信号的客观真实性等特点,使用脑电信号进行情绪识别研究受到国内外学者们的广泛关注。... 情绪识别是指通过人的面部表情、行为动作或者生理信号等信息识别人的情绪状态,其成果在医疗辅助、教育、交通安全等方面有很大的应用价值。由于脑电信号的客观真实性等特点,使用脑电信号进行情绪识别研究受到国内外学者们的广泛关注。查阅了大量脑电情绪识别相关文献并进行归纳、分析和总结。首先,对情绪以及情绪识别的定义、情绪的分类模型、脑电信号的采集和预处理等理论知识进行了详细的解释和分析,给出了脑电情绪识别的一般框架。其次,从时域特征、频域特征、时频特征和非线性特征四方面综述了用于情绪识别的各类脑电特征的提取方法,介绍了脑功能网络的构建以及脑网络属性的提取方法,分析了每类特征和方法的优缺点。然后,对脑电情绪识别中常用的分类算法的特点、优缺点以及适用场景进行了分析。最后,对该领域目前的难点和未来的发展方向进行了总结和展望。可以帮助研究人员系统地了解基于脑电信号的情绪识别研究现状,为后续开展相关研究提供思路。 展开更多
关键词 情绪识别 脑电信号 特征提取 情绪分类 脑网络
下载PDF
基于迁移学习微博情绪分类研究——以H7N9微博为例 被引量:18
4
作者 周清清 章成志 《情报学报》 CSSCI 北大核心 2016年第4期339-348,共10页
社交媒体的发展吸引大量用户,继而产生海量的用户生成内容。对用户生成内容的挖掘分析能够及时掌握用户的情绪动态,继而帮助事件处理、政策施行等。已有研究利用监督机器学习方法进行文本情绪分类,但是这类方法依赖于语料的标注、耗时耗... 社交媒体的发展吸引大量用户,继而产生海量的用户生成内容。对用户生成内容的挖掘分析能够及时掌握用户的情绪动态,继而帮助事件处理、政策施行等。已有研究利用监督机器学习方法进行文本情绪分类,但是这类方法依赖于语料的标注、耗时耗力,并且存在领域适应性问题。迁移学习方法能够避免大量的语料标注、并且一定程度解决领域适应性问题。但是,目前迁移学习鲜有用于情绪分类任务。此外,情绪分类主要是针对博文等长文本,缺少针对微博短文本的相关实证研究。本文在主客观分类基础上,利用迁移学习方法对H7N9微博主观语料文本进行情感分类,并对结果进行情绪分类。实验结果表明,首先,设置形容词个数阈值为2时主客观分类效果最优;其次,利用迁移学习算法进行微博情感分类效果优于非迁移学习方法;最后,利用词频-相关频率作为特征权重计算方法时可以得到较好的情绪分类性能。 展开更多
关键词 情感分类 情绪分类 迁移学习 微博挖掘
下载PDF
高校辅导员心理疏导能力及其培养途径探析 被引量:17
5
作者 王晓艳 周霞 《教育理论与实践》 CSSCI 北大核心 2018年第6期15-17,共3页
高校辅导员心理疏导工作的基本特征是:践行"以人为本"的精神内核,突出主动性和双向互动的本质特征,强调对情绪情感的关注和疏通,工作场景和方法更为灵活。培养高校辅导员的心理疏导能力,应构建服务性学习训练模式,实施指导人... 高校辅导员心理疏导工作的基本特征是:践行"以人为本"的精神内核,突出主动性和双向互动的本质特征,强调对情绪情感的关注和疏通,工作场景和方法更为灵活。培养高校辅导员的心理疏导能力,应构建服务性学习训练模式,实施指导人计划,推进分类管理。 展开更多
关键词 高校辅导员 心理疏导能力 情绪情感 服务性学习训练模式 分类管理
下载PDF
基于深度学习情感分类模型的个性化抑郁症护理策略 被引量:16
6
作者 袁丽洁 武卓 +2 位作者 李敏 雷涛 祝婷 《护理学杂志》 CSCD 北大核心 2020年第22期85-88,共4页
目的探讨人工智能技术在个性化抑郁症护理中的应用,实现精准护理以加速抑郁症患者的康复。方法将60例抑郁症患者按病种和病情分层随机分配为对照组和观察组各30例.对照组采用传统护理方法;观察组采用基于深度学习情感分类模型分类后的... 目的探讨人工智能技术在个性化抑郁症护理中的应用,实现精准护理以加速抑郁症患者的康复。方法将60例抑郁症患者按病种和病情分层随机分配为对照组和观察组各30例.对照组采用传统护理方法;观察组采用基于深度学习情感分类模型分类后的个性化护理方案,即利用脑电图像(EEG)采集设备获取大量带标记的脑电信号数据构建EEG情感训练库,标记抑郁症类型;通过深度学习情感分类模型识别抑郁症患者EEG信号对应的情感类别;根据其识别结果,采取相应的个性化护理措施。对两组患者在住院期间进行等间隔的抑郁量化评估和护理满意率调查。结果干预4周时,观察组汉密尔顿抑郁量表(HAMD)和自评抑郁量表(SDS)的评分显著低于对照组(均P<0.05);观察组干预8周时的康复率高于对照组,但两组比较,差异无统计学意义(P>0.05)。结论基于深度学习情感分类模型的个性化护理方法能显著缓减患者的抑郁程度,加快抑郁症患者的康复速度。 展开更多
关键词 抑郁症 人工智能 深度学习 情感类别 个性化护理
下载PDF
基于多通道LSTM的不平衡情绪分类方法 被引量:15
7
作者 殷昊 李寿山 +1 位作者 贡正仙 周国栋 《中文信息学报》 CSCD 北大核心 2018年第1期139-145,共7页
情绪分类是自然语言处理问题中的重要研究问题之一。情绪分类旨在对文本包含的情绪进行自动分类,该任务是情感分析的一项基本任务。然而,已有的研究都假设各情绪类别的样本数量平衡,这与实际情况并不相符合。该文的研究主要面向不平衡... 情绪分类是自然语言处理问题中的重要研究问题之一。情绪分类旨在对文本包含的情绪进行自动分类,该任务是情感分析的一项基本任务。然而,已有的研究都假设各情绪类别的样本数量平衡,这与实际情况并不相符合。该文的研究主要面向不平衡数据的情绪分类任务。具体而言,该文提出了一种基于多通道LSTM神经网络的方法来解决不平衡情绪分类问题。首先,该方法使用欠采样方法获取多组平衡训练语料;其次,使用每一组训练语料学习一个LSTM模型;最后,通过融合多个LSTM模型,获得最终分类结果。实验结果表明该方法明显优于传统的不平衡分类方法。 展开更多
关键词 情绪分类 不平衡分类 LSTM
下载PDF
基于CNN特征空间的微博多标签情感分类 被引量:14
8
作者 孙松涛 何炎祥 《四川大学学报(工程科学版)》 CSCD 北大核心 2017年第3期162-169,共8页
面对微博情感评测任务中的多标签分类问题时,基于向量空间模型的传统文本特征表示方法难以提供有效的语义特征。基于深度学习的词向量表示技术,能够很好地体现词语的语法和语义关系,且可以依据语义合成原理有效地构建句子的特征表示向... 面对微博情感评测任务中的多标签分类问题时,基于向量空间模型的传统文本特征表示方法难以提供有效的语义特征。基于深度学习的词向量表示技术,能够很好地体现词语的语法和语义关系,且可以依据语义合成原理有效地构建句子的特征表示向量。作者提出一个针对微博句子的多标签情感分类系统,首先从1个大规模的无标注微博文本数据集中学习中文词语的词向量表示,然后采用卷积神经网络(convolution neural network,CNN)模型进行有监督的多情感分类学习,利用学习到的CNN模型将微博句子中的词向量合成为句子向量,最后将这些句子向量作为特征训练多标签分类器,完成微博的多标签情感分类。2013年NLPCC(Natural Language Processing and Chinese Computing)会议的微博情感评测公开数据集中,相比最优评测结果的宽松指标和严格指标,本系统的最佳分类性能分别提升了19.16%和17.75%;采用Recursive Neural Tensor Network模型合成句子向量的方法,取得目前已知文献中的最佳分类性能,系统将2个指标分别提升了3.66%和2.89%。采用多种多标签分类器来对比不同的特征表示方法,发现基于CNN特征空间的句子向量具有最好的情感语义区分度;通过对CNN迭代训练过程的分析,体现了语义合成过程中的模式识别规律。进一步的工作包括引入更多合适的深度学习模型,并深入探索基于词向量的语义合成现象。 展开更多
关键词 情感分类 多标签分类 词向量表示 卷积神经网络 语义合成
下载PDF
结合空间注意力机制与光流特征的微表情识别方法 被引量:14
9
作者 刘德志 梁正友 孙宇 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第10期1541-1552,共12页
针对微表情运动的局部性问题,提出一种将深度学习的空间注意力机制与微表情光流特征相结合的微表情识别自动方法.首先,采用帧差法识别缺少峰值帧标记的微表情样本的峰值帧;然后,利用TV-L1光流法提取微表情起始帧与峰值帧之间的光流水平... 针对微表情运动的局部性问题,提出一种将深度学习的空间注意力机制与微表情光流特征相结合的微表情识别自动方法.首先,采用帧差法识别缺少峰值帧标记的微表情样本的峰值帧;然后,利用TV-L1光流法提取微表情起始帧与峰值帧之间的光流水平、垂直分量图,并根据光流的水平、垂直分量图导出对应的光流应变模式图;将3个光流图以通道叠加的方式连接起来,构成微表情的光流特征图;最后,在Inception模块搭建的卷积神经网络中设计了一种包含可学习参数的空间注意力单元,使模型在特征提取过程中能够更加关注存在微表情运动的区域.在空间注意力单元中利用3×3和7×7这2种大小的卷积核进行空间注意力的推断,使模型能够综合地考虑不同尺度卷积核的注意力推断结果.实验结果表明,该方法在MEGC2019综合微表情数据集上的识别准确率达到0.788,优于已有的微表情识别方法. 展开更多
关键词 微表情识别 深度学习 空间注意力机制 光流法 卷积神经网络 情绪分类
下载PDF
共空间模式结合小波包分解的脑电情感分类 被引量:13
10
作者 陈景霞 郑茹 +1 位作者 贾小云 张鹏伟 《计算机工程与应用》 CSCD 北大核心 2019年第1期149-153,共5页
为了有效缓解不同受试者跨天试验间脑电信号差异对分类性能的影响,结合共空间模式和小波包分解算法,对12个受试者连续5天的脑电波数据进行空间滤波处理和时频域上小波包能量特征提取。采用Bagging tree、SVM、LDA和BLDA模型进行情感分... 为了有效缓解不同受试者跨天试验间脑电信号差异对分类性能的影响,结合共空间模式和小波包分解算法,对12个受试者连续5天的脑电波数据进行空间滤波处理和时频域上小波包能量特征提取。采用Bagging tree、SVM、LDA和BLDA模型进行情感分类实验。实验结果表明,使用SVM和BLDA分类器对该算法提取的脑电特征进行两类情感分类的精度比目前最优的结果分别提高了4.4%和3.5%,有效地提高了跨天脑电情感分类的准确率和稳定性,对于开发鲁棒的情感脑-机接口应用具有一定价值。 展开更多
关键词 脑电波 共空间模式 小波包分解 情感分类
下载PDF
基于大规模弹幕数据监听和情感分类的舆情分析模型 被引量:12
11
作者 叶健 赵慧 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期86-100,共15页
随着在线视频平台的快速发展,弹幕逐渐成为人们表达观点的一个重要途径,尤其受到年轻人的欢迎.与常规的文本不同,弹幕文本普遍较短,表达随意,网络词汇较多,一些常规的停用词被用于表达情感.提出了一种基于弹幕数据的舆情分析模型,针对... 随着在线视频平台的快速发展,弹幕逐渐成为人们表达观点的一个重要途径,尤其受到年轻人的欢迎.与常规的文本不同,弹幕文本普遍较短,表达随意,网络词汇较多,一些常规的停用词被用于表达情感.提出了一种基于弹幕数据的舆情分析模型,针对弹幕数据生成和存储特点,提出了热点检测循环自适应弹幕数据获取算法;扩充了情感词典来区分弹幕中情感倾向数据和中性数据,以解决弹幕中出现的网络词汇较多的问题;基于卷积神经网络(Convolutional Neural Network,CNN)建立了情感褒贬分类模型,用来区分情感倾向弹幕的正负情感倾向,在此基础上得到了舆情分析的结果.实验表明,本文的舆情分析模型能有效地表达新闻类弹幕数据的舆情分析结果. 展开更多
关键词 弹幕情感 网络舆情 情感分类 深度学习 网络爬虫
下载PDF
基于高斯核函数支持向量机的脑电信号时频特征情感多类识别 被引量:12
12
作者 李幼军 钟宁 +2 位作者 黄佳进 栗觅 王东升 《北京工业大学学报》 CAS CSCD 北大核心 2018年第2期234-243,共10页
为了找到一种综合分析方法,提高对脑电信号情感多分类识别的分类精确度,将DEAP数据库中的脑电数据采用经验模态分解的方法分解为多个本征模函数,并对本征模函数按不同的时长窗口进行分片,提取其功率谱密度作为脑电信号特征.将被试对音... 为了找到一种综合分析方法,提高对脑电信号情感多分类识别的分类精确度,将DEAP数据库中的脑电数据采用经验模态分解的方法分解为多个本征模函数,并对本征模函数按不同的时长窗口进行分片,提取其功率谱密度作为脑电信号特征.将被试对音乐视频的情感评价指数用于生成情感分类标签,按"唤醒度"和"效价"2个维度将评价指数映射到二维情感模型中,分成4类.采用"一对一"的高斯核函数支持向量机对脑电特征进行多分类分析.实验结果表明:高斯核函数支持向量机的最高分类准确度达到90.9%(22号被试),平均分类准确度达到68.3%.高斯核函数支持向量机能有效地从脑电信号中识别出不同的情感状态;同时,对于相同刺激,不同的被试产生的情感状态不同;并且,在清醒状态下,脑电信号的高频子波对情感分类有更高的分类精确度. 展开更多
关键词 髙斯核函数 支持向量机 情感分类 脑电图(EEG) 经验模态分解(EMD) 本征模函数(IMF)
下载PDF
融合情绪知识的案件微博评论情绪分类 被引量:12
13
作者 郭贤伟 赖华 +2 位作者 余正涛 高盛祥 相艳 《计算机学报》 EI CSCD 北大核心 2021年第3期564-578,共15页
案件微博评论的情绪分类是一个特定领域的情感多分类任务,旨在快速有效地识别海量评论中的情绪,有助于相关部门及时评估舆情风险和制定相关政策.由于传统方法难以有效利用评论中常用的情绪词和表情符号等情绪知识,本文提出一种融合情绪... 案件微博评论的情绪分类是一个特定领域的情感多分类任务,旨在快速有效地识别海量评论中的情绪,有助于相关部门及时评估舆情风险和制定相关政策.由于传统方法难以有效利用评论中常用的情绪词和表情符号等情绪知识,本文提出一种融合情绪知识的案件微博评论情绪分类方法.首先,整合现有的情感计算资源构建了一个包含案件微博情绪词典、表情符号、网络用语、否定词及程度副词等的情绪知识库.其次,考虑情绪知识库和词性的作用定义了15种情绪知识,通过提出的连续向量表示方法构建评论的情绪知识表示.然后将评论的语义表示和情绪知识表示分别输入一个语义初始化滤波器的卷积神经网络(INIT-CNN)和一个结合注意力机制的全连接网络中,得到深层的语义特征向量和情绪知识表示的注意力特征向量.最后,将两个特征向量进行拼接以融合语义特征和情绪知识特征,训练一个情绪分类模型,称为EK-INIT-CNN(Emotional knowledge enhanced INIT-CNN).在案件微博评论数据集上的实验表明,相比INIT-CNN,EK-INIT-CNN的Macro_Precision、Macro_Recall和Macro_F1指标分别提升了1.87%、1.95%和1.88%.EK-INIT-CNN在NLPCC中文微博情绪分析评测数据集上的性能则超过了目前已知文献中的最好结果.实验证明,该方法能有效地融入外部情绪知识,且相对传统方法在情绪分类任务上具有明显的优势. 展开更多
关键词 案件微博评论 情绪知识表示 卷积神经网络 注意力机制 情绪分类
下载PDF
一种基于Inception思想的人脸表情分类深度学习算法研究 被引量:11
14
作者 王晓红 梁祐慈 麻祥才 《光学技术》 CAS CSCD 北大核心 2020年第3期347-353,共7页
人脸的情感识别在人机交互领域有着重要作用,对人脸表情进行分类也是研究图像情感的一种方法。针对目前公开的人脸表情数据集数据量少,卷积神经网络的结构较复杂、参数多且计算量大、易出现过拟合的现象,需要构建一种针对小数据集的人... 人脸的情感识别在人机交互领域有着重要作用,对人脸表情进行分类也是研究图像情感的一种方法。针对目前公开的人脸表情数据集数据量少,卷积神经网络的结构较复杂、参数多且计算量大、易出现过拟合的现象,需要构建一种针对小数据集的人脸表情分类模型。利用MTCNN模型进行人脸检测后,结合Inception的思想提出一种新的卷积神经网络模型,使用1×1卷积核对特征维数进行缩减,增加并平衡网络深度和宽度的同时不增加额外的计算负担,更精准的对人脸特征进行提取。经实验验证,提出的算法在CK+和JAFFE人脸数据集上,较其他方法有更好的效果,构建的人脸表情分类卷积神经网络模型能有效进行人脸表情的分类。 展开更多
关键词 表情识别 情感分类 MTCNN INCEPTION
原文传递
基于卷积神经网络的领带花型情感分类 被引量:10
15
作者 汪珊娜 张华熊 康锋 《纺织学报》 EI CAS CSCD 北大核心 2018年第8期117-123,共7页
为避免传统手工特征和局部特征难以全面表征和准确量化图像情感特征的不足,以领带花型为研究对象,提出了一种融合手工情感特征的基于卷积神经网络的织物图像情感分类方法。首先对领带花型图像进行情感评价,建立领带花型图像的情感样本库... 为避免传统手工特征和局部特征难以全面表征和准确量化图像情感特征的不足,以领带花型为研究对象,提出了一种融合手工情感特征的基于卷积神经网络的织物图像情感分类方法。首先对领带花型图像进行情感评价,建立领带花型图像的情感样本库;然后提取图像饱和度、纹理等手工情感特征和图像像素值作为卷积神经网络的输入;其次建立卷积神经网络模型,将2 000幅样本图像作为训练样本对卷积神经网络进行训练;最后将1 000幅检测样本输入训练后的卷积神经网络,实现了领带花型图像的情感分类。实验结果显示:该方法的情感分类准确率为89.7%,比采用传统手工特征的分类方法有较大提升,较其他卷积神经网络模型正确率更高。 展开更多
关键词 卷积神经网络 深度学习 领带花型 织物情感 情感分类
下载PDF
基于卷积神经网络的中文微博情感分类 被引量:10
16
作者 冯多 林政 +1 位作者 付鹏 王伟平 《计算机应用与软件》 2017年第4期157-164,177,共9页
微博是互联网舆论演化的重要平台,对微博进行情感分析,有助于及时掌握社会热点和舆论动态。由于微博数据内容简短、特征稀疏、富含新词等特征,微博情感分类依然是一个较难的任务。传统的文本情感分类方法主要基于情感词典或者机器学习等... 微博是互联网舆论演化的重要平台,对微博进行情感分析,有助于及时掌握社会热点和舆论动态。由于微博数据内容简短、特征稀疏、富含新词等特征,微博情感分类依然是一个较难的任务。传统的文本情感分类方法主要基于情感词典或者机器学习等,但这些方法存在数据稀疏的问题,而且忽略了词的语义、语序等信息。为了解决上述问题,提出一种基于卷积神经网络的中文微博情感分类模型CNNSC,实验表明相比目前的主流方法,CNNSC的准确率提高了3.4%。 展开更多
关键词 情感分类 卷积神经网络 微博分类
下载PDF
基于用户兴趣词典和LSTM的个性化情感分类方法 被引量:10
17
作者 王友卫 朱晨 +3 位作者 朱建明 李洋 凤丽洲 刘江淳 《计算机科学》 CSCD 北大核心 2021年第S02期251-257,共7页
微博是一个可以分享生活、发表看法、发泄情感的社交平台,由于数据量大且易于获取,微博数据已被广泛用于网络用户情感分析。传统对微博进行情感预测的研究没有考虑用户的用词喜好、语言风格等个性化因素的影响,使得情感分类结果的准确... 微博是一个可以分享生活、发表看法、发泄情感的社交平台,由于数据量大且易于获取,微博数据已被广泛用于网络用户情感分析。传统对微博进行情感预测的研究没有考虑用户的用词喜好、语言风格等个性化因素的影响,使得情感分类结果的准确性不高。首先通过分析用户兴趣特征构建用户兴趣词典,在此基础上提出基于用户兴趣词典的情感分类模型;然后利用长短期记忆网络(Long Short-Term Memory,LSTM)分类准确性高的特点训练一个通用的LSTM分类模型;最后利用支持向量机融合不同模型以得到最终的情感分类结果。实验结果表明,与支持向量机、朴素贝叶斯等传统分类器相比,基于用户兴趣词典与LSTM的个性化情感分类方法在分类精度上有较大提升;与LSTM、循环神经网络等深度学习方法相比,该方法在保证运行效率的前提下能获得更高的分类精度。 展开更多
关键词 情感分类 用户兴趣词典 LSTM模型 支持向量机
下载PDF
基于类序列规则的中文微博情感分类 被引量:9
18
作者 郑诚 沈磊 代宁 《计算机工程》 CAS CSCD 北大核心 2016年第2期184-189,194,共7页
研究中文微博文本的情感分类问题,介绍一种基于类序列规则的微博情感分类方法。通过情感词典和机器学习的方法获得微博文本中每个句子的2个潜在的情感标签,将每条微博文本看作是一个数据序列,从数据集中挖掘出类序列规则,从挖掘出的规... 研究中文微博文本的情感分类问题,介绍一种基于类序列规则的微博情感分类方法。通过情感词典和机器学习的方法获得微博文本中每个句子的2个潜在的情感标签,将每条微博文本看作是一个数据序列,从数据集中挖掘出类序列规则,从挖掘出的规则中提取出的有效特征并结合文本其他特征来训练分类器。在COAE会议提供的微博数据集上的实验结果表明该方法的有效性。 展开更多
关键词 情感分类 微博文本 类序列规则 情感词典 机器学习 文本特征
下载PDF
基于语义特征的文本情感倾向识别研究 被引量:7
19
作者 何坤 李伟生 杨勇 《计算机应用研究》 CSCD 北大核心 2010年第3期992-994,共3页
由于网络评论用语的多样性,常用的文本主题分类方法并不能完全适应情感倾向识别。针对这个问题,从语义理解的角度出发,提出一种基于语义特征的情感倾向识别方法,通过增加语义特征使得原始文本表现出更加明确的情感倾向,并且更加容易区... 由于网络评论用语的多样性,常用的文本主题分类方法并不能完全适应情感倾向识别。针对这个问题,从语义理解的角度出发,提出一种基于语义特征的情感倾向识别方法,通过增加语义特征使得原始文本表现出更加明确的情感倾向,并且更加容易区分。实验结果表明了该方法的有效性。 展开更多
关键词 语义特征 倾向识别 情感分类 主题分类
下载PDF
基于CNN和Bi-LSTM的脑电波情感分析 被引量:8
20
作者 朱丽 杨青 +2 位作者 吴涛 李晨 李铭 《应用科学学报》 CAS CSCD 北大核心 2022年第1期1-12,共12页
针对目前大多数脑电波情感识别方法存在的依赖手动特征提取等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和双向长短时记忆(bidirectional long short-term memory,Bi-LSTM)网络的混合模型。首先将一维数据转换... 针对目前大多数脑电波情感识别方法存在的依赖手动特征提取等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和双向长短时记忆(bidirectional long short-term memory,Bi-LSTM)网络的混合模型。首先将一维数据转换为二维数据,采用CNN提取空间特征;然后将一维数据输入Bi-LSTM,获取时间特征;最后将融合的空间和时间特征输入Softmax分类器,得到最终分类结果。在DEAP数据集上的实验结果表明:CNN和Bi-LSTM混合模型具有较好的分类性能,在效价度和唤醒度上的准确率分别达到88.55%和89.07%,是一种可行的脑电波情感分类模型。 展开更多
关键词 脑电信号 情感分类 卷积神经网络 双向长短时记忆网络 深度学习
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部