针对灰狼优化算法(grey wolf opotimizer,GWO)易早熟收敛和陷入局部最优的缺点,提出一种基于精英反向学习的改进灰狼算法(grey wolf optimizer based on particle swarm optimizer,PSO-GWO)。首先,利用精英反向学习机制初始化种群,使种...针对灰狼优化算法(grey wolf opotimizer,GWO)易早熟收敛和陷入局部最优的缺点,提出一种基于精英反向学习的改进灰狼算法(grey wolf optimizer based on particle swarm optimizer,PSO-GWO)。首先,利用精英反向学习机制初始化种群,使种群保持多样性;然后提出一种非线性控制因子策略,增加算法的搜索能力,提高算法的收敛速度;最后基于差分进化和粒子群思想更新了位置方程,从而提升算法的收敛性能。采取10个基准测试函数将本文提出的改进算法与差分进化算法、粒子群算法、传统灰狼算法、其他学者提出的改进灰狼优化算法进行对比。实验结果表明,本文提出的算法与其他算法相比,在求解多峰函数问题上效果显著,可以搜索到最优解0,同时求解最优非0解函数的效果也体现地较优越;同时运用改进的算法在实际电动汽车充电调度上进行了对比分析,发现也取得了不错的效果。展开更多
Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and tran...Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment.展开更多
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob...A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.展开更多
针对黑猩猩优化算法存在全局搜索能力弱、寻优精度低、收敛速度慢等问题,提出一种混沌精英池协同教与学改进的黑猩猩优化算法(chimp optimization algorithm improved by the elite chaos pool collaborative teaching-learning,ECTChOA...针对黑猩猩优化算法存在全局搜索能力弱、寻优精度低、收敛速度慢等问题,提出一种混沌精英池协同教与学改进的黑猩猩优化算法(chimp optimization algorithm improved by the elite chaos pool collaborative teaching-learning,ECTChOA)。采用混沌精英池策略生成初始种群,增强初始解的质量和种群的多样性,为算法全局寻优奠定基础;引入自适应振荡因子平衡ChOA的全局探索和局部开发能力;结合教与学优化算法的教学阶段和粒子群优化算法的个体记忆思想优化种群位置更新过程,提高算法的寻优精度和收敛速度。仿真实验将ECTChOA与标准ChOA、其他元启发式优化算法和最新改进ChOA在12个基准测试函数下进行寻优对比,实验结果与Wilcoxon秩和检验p值结果均表明所提改进算法具有更高搜索精度、更快的收敛速度和更好的鲁棒性。另外,将ECTChOA应用于机械工程设计案例中,进一步验证ECTChOA在实际工程问题中的可行性和适用性。展开更多
文摘针对灰狼优化算法(grey wolf opotimizer,GWO)易早熟收敛和陷入局部最优的缺点,提出一种基于精英反向学习的改进灰狼算法(grey wolf optimizer based on particle swarm optimizer,PSO-GWO)。首先,利用精英反向学习机制初始化种群,使种群保持多样性;然后提出一种非线性控制因子策略,增加算法的搜索能力,提高算法的收敛速度;最后基于差分进化和粒子群思想更新了位置方程,从而提升算法的收敛性能。采取10个基准测试函数将本文提出的改进算法与差分进化算法、粒子群算法、传统灰狼算法、其他学者提出的改进灰狼优化算法进行对比。实验结果表明,本文提出的算法与其他算法相比,在求解多峰函数问题上效果显著,可以搜索到最优解0,同时求解最优非0解函数的效果也体现地较优越;同时运用改进的算法在实际电动汽车充电调度上进行了对比分析,发现也取得了不错的效果。
基金Supported by Heilongjiang Province Philosophy and Social Science Planning Research Project(22JYB232)。
文摘Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment.
基金the National Natural Science Foundations of China (60873099 )
文摘A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.
文摘针对黑猩猩优化算法存在全局搜索能力弱、寻优精度低、收敛速度慢等问题,提出一种混沌精英池协同教与学改进的黑猩猩优化算法(chimp optimization algorithm improved by the elite chaos pool collaborative teaching-learning,ECTChOA)。采用混沌精英池策略生成初始种群,增强初始解的质量和种群的多样性,为算法全局寻优奠定基础;引入自适应振荡因子平衡ChOA的全局探索和局部开发能力;结合教与学优化算法的教学阶段和粒子群优化算法的个体记忆思想优化种群位置更新过程,提高算法的寻优精度和收敛速度。仿真实验将ECTChOA与标准ChOA、其他元启发式优化算法和最新改进ChOA在12个基准测试函数下进行寻优对比,实验结果与Wilcoxon秩和检验p值结果均表明所提改进算法具有更高搜索精度、更快的收敛速度和更好的鲁棒性。另外,将ECTChOA应用于机械工程设计案例中,进一步验证ECTChOA在实际工程问题中的可行性和适用性。