Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here...Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here,employing ionic liquid gating,a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±δ(PCO)films,based on two distinct mechanisms.Firstly,with positive electric fields,the film can be reversibly switched between superconducting and non-superconducting states,attributed to the carrier doping effect.Secondly,the film becomes more resistive by applying negative bias voltage up to-4V,but strikingly,a non-volatile superconductivity is achieved once the gate voltage is removed.Such phenomenon represents a distinctive route of manipulating superconductivity in PCO,resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments.The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics,as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tcsuperconductors.展开更多
基金supported by the National Key Basic Research Program of China(2015CB921000,2016YFA0300301,2017YFA0302902,2017YFA0303003 and 2018YFB0704102)the National Natural Science Foundation of China(11674374 and 11834016)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB25000000)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001)CAS Interdisciplinary Innovation Teambenefited from the bilateral collaboration F.R.S.-FNRS/NSFC(V4/345-DeM-229)。
文摘Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here,employing ionic liquid gating,a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±δ(PCO)films,based on two distinct mechanisms.Firstly,with positive electric fields,the film can be reversibly switched between superconducting and non-superconducting states,attributed to the carrier doping effect.Secondly,the film becomes more resistive by applying negative bias voltage up to-4V,but strikingly,a non-volatile superconductivity is achieved once the gate voltage is removed.Such phenomenon represents a distinctive route of manipulating superconductivity in PCO,resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments.The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics,as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tcsuperconductors.