By simplifying the r-bridge unit,a nonfused ring electron acceptor(NFREA)BM-2F was designed and synthesized with several high-yield steps.The specific molecular structure features of BM-2F are planar molecular backbon...By simplifying the r-bridge unit,a nonfused ring electron acceptor(NFREA)BM-2F was designed and synthesized with several high-yield steps.The specific molecular structure features of BM-2F are planar molecular backbone and out-of-plane side chain,which is favorable for charge transport and can suppress the over-aggregation.BM-2F based neat and blend films display obvious face-on molecular orientation.Specially,D18:BM-2F based blend film can form good bicontinuous interpenetrating network.More excitingly,a power conversion efficiency of 16.15%was achieved with D18:BM-2F based photovoltaic devices,which is the highest one based on NFREAs.Our researches manifest that NFREA is a promising direction for low-cost and high-performance organic solar cells.展开更多
Fullerene derivatives are classic electron acceptor materials for organic solar cells (Oscs) but possess some intrinsic drawbacks such as weak visiblelightabsorption,limitedoptoelectronic property tunability,dificult ...Fullerene derivatives are classic electron acceptor materials for organic solar cells (Oscs) but possess some intrinsic drawbacks such as weak visiblelightabsorption,limitedoptoelectronic property tunability,dificult purification and photochemical/morphological instability.Fullereneacceptors area bottleneck restricting further development of this field. Ourgroup pioneered the exploration of novel nonfulerene acceptors in China in 2006,andinitiated the research of two representative acceptor systems, rylene dimide polymer and fused-ring electron acceptor (FREA).FREA breaks the theoreticalefficiencylimit of fullerene-based OsCs (-13%) and promotes the whole field to an unprecedented prosperity with efficiency of 20%, heraldinga nonfullerene era for OsCs.In this review, we revisit 15-year nonfullerene exploration journey,summarize the design principles,molecular engineeringstrategies, physical mechanisms and device applications of these two nonfullerene acceptor systems, and propose some possible researchtopics in the nearfuture.展开更多
The side-chain has a significant influence on the optical properties and aggregation behaviors of the organic small molecule acceptors,which becomes an important strategy to optimize the photovoltaic performance of or...The side-chain has a significant influence on the optical properties and aggregation behaviors of the organic small molecule acceptors,which becomes an important strategy to optimize the photovoltaic performance of organic solar cells.In this work,we designed and synthesized three brand-new nonfused ring electron acceptors(NFREAs)OC4-4Cl-Ph,OC4-4Cl-Th,and OC4-4Cl-C8 with hexylbenzene,hexylthiophene,and octyl side chains on theπ-bridge units.Compared with OC4-4Cl-Ph and OC4-4Cl-Th,OC4-4Cl-C8 with linear alkyl side chain has more red-shift absorption,which is conducive to obtaining higher short-circuit current density.Additionally,the OC4-4Cl-C8 film exhibits a longer exciton diffusion distance,and the D18:OC4-4Cl-C8 blend film displays faster hole transfer,weaker bimolecular recombination,and more efficient exciton transport.Furthermore,The D18:OC4-4Cl-C8 blend films may effectively form interpenetrating networks that resemble nanofibrils,which can facilitate exciton dissociation and charge transport.Finally,OC4-4Cl-C8-based devices can be created a marvellously power conversion efficiency(PCE)of 16.56%,which is much higher than OC4-4Cl-Ph(12.29%)-and OC4-4Cl-Th-based(11.00%)ones,being the highest PCE among the NFREA based binary devices.All in all,we have validated that side-chain engineering is an efficient way to achieve high-performance NFREAs.展开更多
The early diagenetic characteristics of pyrite formation processes in a Miocene freshwater sequence of mixed sediments (coal fragments in clays, sandstones or shales) alternating with continuous brown coal layers wa...The early diagenetic characteristics of pyrite formation processes in a Miocene freshwater sequence of mixed sediments (coal fragments in clays, sandstones or shales) alternating with continuous brown coal layers was investigated. Based on abundant minerals, the following main sedimentary environments were distinguished: the illite-montmorillonitic (I-M), calcitic (Ct) and coal-forming environment (CL). For these hydrogeochemically differing environments the effects of limiting factors on the pyrite formation process (availability of sulphate and Fe, amount of organic matter and participation of organic sulphur) were assessed by correlation analysis. Significant differences in the effects of these limiting factors in the particular environments were observed. These differences were explained taking in account the different oxidative activity, Fe-complex and surface complex forming properties of humic substances in dependence of pH of environment and the abundance of sorptionally active clay minerals. In environments having a relatively low pH and containing clay minerals (I-M- and CL-environments) the oxidative activity of humic substances (Hs) on pyrite precursors was greatly prevented however pyrite formation depended on reactive Fe availability as the consequence of complex formation. On the contrary, in environments with a relatively high pH, as it was the calcitic, the oxidative activity of Hs was greatly enhanced, thus oxidizing the sulfur precursors of pyrite. The oxidation degree of organic matter was probably also a consequence of the differing activity of the humic electron-acceptors.展开更多
By employing the asymmetric end-group engineering,an asymmetric nonfused-ring electron acceptor(NFREA)was designed and synthesized.Compared with the symmetric analogs(NoCA-17 and NoCA-18),NoCA-19 possesses broader lig...By employing the asymmetric end-group engineering,an asymmetric nonfused-ring electron acceptor(NFREA)was designed and synthesized.Compared with the symmetric analogs(NoCA-17 and NoCA-18),NoCA-19 possesses broader light absorption range,more coplanarπ-conjugated backbone,and appropriate crystallinity according to the experimental and theoretical results.The organic solar cells based on J52:NoCA-19 exhibited a power conversion efficiency as high as 12.26%,which is much higher than those of J52:NoCA-17(9.50%)and J52:NoCA-18(11.77%),mainly due to more efficient exciton dissociation,better and balanced charge mobility,suppressed recombination loss,shorter charge extraction time,longer charge carrier lifetimes,and more favorable blend film morphology.These findings demonstrate the great potential of asymmetric end-group engineering in exploring low-cost and high-performance NFREAs.展开更多
Nonfused ring electron acceptors(NFREAs)have attracted much attention due to their concise synthetic routes and low cost.However,developing high-performance NFREAs with simple structure remains a great challenge.In th...Nonfused ring electron acceptors(NFREAs)have attracted much attention due to their concise synthetic routes and low cost.However,developing high-performance NFREAs with simple structure remains a great challenge.In this work,a simple building block(POBT)with noncovalently conformational locks(No CLs)was designed and synthesized.Single-crystal X-ray study indicated the presence of S…O NOCLs in POBT,thus enabling it to possess a coplanar conformation comparable to that of fused-ring CPT.Two novel NFREAs based on CPT and POBT were developed,namely TT-CPT and TT-POBT,respectively.Besides,TT-POBT possessed a smaller Stokes shift and a reduced reorganization energy compared with TT-CPT,indicating the introduction of S…O No CLs can enhance the molecular rigidity even if simplifying the molecular structure.As a result,the TT-POBT-based PSC device afforded an impressive power conversion efficiency of 11.15%,much higher than that of TT-CPT counterpart(7.03%),mainly resulting from the tighterπ-πstacking,improved and balanced charge transport,and more favorable film morphology.This work demonstrates the potential of the simple building block POBT with No CLs towards constructing low-cost and highperformance NFREAs.展开更多
The power conversion efficiencies(PCEs)of organic solar cells(OSCs)have improved considerably in recent years with the development of fused-ring electron acceptors(FREAs).Currently,FREAs-based OSCs have achieved high ...The power conversion efficiencies(PCEs)of organic solar cells(OSCs)have improved considerably in recent years with the development of fused-ring electron acceptors(FREAs).Currently,FREAs-based OSCs have achieved high PCEs of over 19%in single-junction OSCs.Whereas the relatively high synthetic complexity and the low yield of FREAs typically result in high production costs,hindering the commercial application of OSCs.In contrast,noncovalently fused-ring electron acceptors(NFREAs)can compensate for the shortcomings of FREAs and facilitate large-scale industrial production by virtue of the simple structure,facile synthesis,high yield,low cost,and reasonable efficiency.At present,OSCs based on NFREAs have exceeded the PCEs of 15%and are expected to reach comparable efficiency as FREAs-based OSCs.Here,recent advances in NFREAs in this review provide insight into improving the performance of OSCs.In particular,this paper focuses on the effect of the chemical structures of NFREAs on the molecule conformation,aggregation,and packing mode.Various molecular design strategies,such as core,side-chain,and terminal group engineering,are presented.In addition,some novel polymer acceptors based on NFREAs for all-polymer OSCs are also introduced.In the end,the paper provides an outlook on developing efficient,stable,and low-cost NFREAs for achieving commercial applications.展开更多
Organic solar cells(OSCs)have attracted extensive attention from both academia and industry in recent years due to their remarkable improvement in power conversion efficiency(PCE).However,the Golden Triangle(the balan...Organic solar cells(OSCs)have attracted extensive attention from both academia and industry in recent years due to their remarkable improvement in power conversion efficiency(PCE).However,the Golden Triangle(the balance of efficiency-stability-cost)required for large-scale industrialization of OSCs still remains a great challenge.Here,a new nonfused-ring electron acceptor(NFREA)BF and its polymerized counterpart PBF were designed and synthesized,and their photovoltaic performance,storage stability and material cost were systematically investigated.When blended with a widely-used polymer donor PBDB-T,the PBFbased all-polymer solar cell(all-PSC)displayed a record high PCE of 12.61%for polymerized NFREAs(PNFREAs)with an excellent stability(95.2%of initial PCE after 800 h storage),superior to the BF counterpart.Impressively,PBF-based allPSC possesses the highest industrial figure-of-merit(i-FOM)value of 0.309 based on an efficiency-stability-cost evaluation,in comparison to several representative OSC systems(such as PM6:Y6 and PBDB-T:PZ1).This work provides an insight into the balance of efficiency,stability,and cost,and also indicates that the PNFREAs are promising materials toward the commercial application of OSCs.展开更多
Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard elec...Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard electrode potentials,which may lead to differences in corrosion,but their effects on corrosion by the same bacteria have not been reported.The corrosion of Q235 steel affected by Pseudodesulfovibrio cashew(P.cashew)in the sulfate and nitrate media under carbon starvation was studied.It was found that sulfate and nitrate did not lead to differences in corrosion under abiotic conditions.However,P.cashew promoted corrosion in both cases,and the consumption of H_(2)was the main mechanism for MIC.In addition,corrosion was more severe in the sulfate media.The higher corrosivity of P.cashew with sulfate as the electron acceptor is closely related to the higher number of sessile cells in the biofilm,higher bacterial motility,more hydrogen production pathways,and the increased gene expression of enzymes related to energy synthesis.展开更多
Nonfused ring electron acceptors(NFREAs)are promising candidates for future commercialization of organic solar cells(OSCs)due to their simple synthesis.Still,the power conversion efficiencies(PCEs)of NFREA-based OSCs ...Nonfused ring electron acceptors(NFREAs)are promising candidates for future commercialization of organic solar cells(OSCs)due to their simple synthesis.Still,the power conversion efficiencies(PCEs)of NFREA-based OSCs have large room for improvement.In this work,by merging end group halogenation and side chain engineering,we developed four A-D-A’-D-A type NFREAs,which we refer to as EH-4F,C4-4F,EH-4Cl,and C4-4Cl.Single crystal X-ray diffraction revealed that multiple intermolecular S⋅⋅⋅F interactions between cyclopentadithiophene and 5,6-difluoro-3-(dicyanomethylene)indanone could cause an unfavorable dimer formation,leading to ineffectiveπ-πstackings in EH-4F and C4-4F,whereas no such dimer was found in EH-4Cl and C4-4Cl after replacing with 5,6-dichloro-3-(dicyanomethylene)indanone.Moreover,although the shorter n-butyl side chain resulted in a closer molecular packing in C4-4Cl,EH-4Cl(2-ethylhexyl substitution)with proper crystallinity exhibited enhanced face-on orientation in thin film,which is favorable for vertical charge transport and further reducing charge recombination.As a result,a PCE of 13.0%is obtained for EH-4Cl-based OSC with a fill factor of 0.70.This work highlights the importance of molecular packing and orientation control toward future high-performance A-D-A’-D-A type NFREAs.展开更多
We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diet...We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diethynylbenzene(para-linkage)and 1,3-diethynylbenzene(meta-linkage),isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained.It was found that para-linked conjugated polymer(PA)showed better solubility,strongerπ-πstacking,more favorable blend morphology,and better photovoltaic performance than those of meta-linked conjugated polymers(PM)did.Device based on PTB7-Th:PA(PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl})showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA(3.29%versus 0.92%).Moreover,the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy.By copolymerizing a small amount of meta-linkages into PA,the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density(Jsc)and fill factor(FF),resulting in an improved power conversion efficiency(PCE)of 4.03%.展开更多
基金This research was made possible thanks to the financial support from the National Natural Science Foundation of China(51933001,52173174,22109080,21734009).
文摘By simplifying the r-bridge unit,a nonfused ring electron acceptor(NFREA)BM-2F was designed and synthesized with several high-yield steps.The specific molecular structure features of BM-2F are planar molecular backbone and out-of-plane side chain,which is favorable for charge transport and can suppress the over-aggregation.BM-2F based neat and blend films display obvious face-on molecular orientation.Specially,D18:BM-2F based blend film can form good bicontinuous interpenetrating network.More excitingly,a power conversion efficiency of 16.15%was achieved with D18:BM-2F based photovoltaic devices,which is the highest one based on NFREAs.Our researches manifest that NFREA is a promising direction for low-cost and high-performance organic solar cells.
基金This work is supported by the National Natural Science Foundation of China(U21A20101).
文摘Fullerene derivatives are classic electron acceptor materials for organic solar cells (Oscs) but possess some intrinsic drawbacks such as weak visiblelightabsorption,limitedoptoelectronic property tunability,dificult purification and photochemical/morphological instability.Fullereneacceptors area bottleneck restricting further development of this field. Ourgroup pioneered the exploration of novel nonfulerene acceptors in China in 2006,andinitiated the research of two representative acceptor systems, rylene dimide polymer and fused-ring electron acceptor (FREA).FREA breaks the theoreticalefficiencylimit of fullerene-based OsCs (-13%) and promotes the whole field to an unprecedented prosperity with efficiency of 20%, heraldinga nonfullerene era for OsCs.In this review, we revisit 15-year nonfullerene exploration journey,summarize the design principles,molecular engineeringstrategies, physical mechanisms and device applications of these two nonfullerene acceptor systems, and propose some possible researchtopics in the nearfuture.
基金National Natural Science Foundation of China,Grant/Award Numbers:52173174,51933001,22109080Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2022YQ45Taishan Scholars Program,Grant/Award Numbers:tstp20221121,tsqnz20221134。
文摘The side-chain has a significant influence on the optical properties and aggregation behaviors of the organic small molecule acceptors,which becomes an important strategy to optimize the photovoltaic performance of organic solar cells.In this work,we designed and synthesized three brand-new nonfused ring electron acceptors(NFREAs)OC4-4Cl-Ph,OC4-4Cl-Th,and OC4-4Cl-C8 with hexylbenzene,hexylthiophene,and octyl side chains on theπ-bridge units.Compared with OC4-4Cl-Ph and OC4-4Cl-Th,OC4-4Cl-C8 with linear alkyl side chain has more red-shift absorption,which is conducive to obtaining higher short-circuit current density.Additionally,the OC4-4Cl-C8 film exhibits a longer exciton diffusion distance,and the D18:OC4-4Cl-C8 blend film displays faster hole transfer,weaker bimolecular recombination,and more efficient exciton transport.Furthermore,The D18:OC4-4Cl-C8 blend films may effectively form interpenetrating networks that resemble nanofibrils,which can facilitate exciton dissociation and charge transport.Finally,OC4-4Cl-C8-based devices can be created a marvellously power conversion efficiency(PCE)of 16.56%,which is much higher than OC4-4Cl-Ph(12.29%)-and OC4-4Cl-Th-based(11.00%)ones,being the highest PCE among the NFREA based binary devices.All in all,we have validated that side-chain engineering is an efficient way to achieve high-performance NFREAs.
文摘The early diagenetic characteristics of pyrite formation processes in a Miocene freshwater sequence of mixed sediments (coal fragments in clays, sandstones or shales) alternating with continuous brown coal layers was investigated. Based on abundant minerals, the following main sedimentary environments were distinguished: the illite-montmorillonitic (I-M), calcitic (Ct) and coal-forming environment (CL). For these hydrogeochemically differing environments the effects of limiting factors on the pyrite formation process (availability of sulphate and Fe, amount of organic matter and participation of organic sulphur) were assessed by correlation analysis. Significant differences in the effects of these limiting factors in the particular environments were observed. These differences were explained taking in account the different oxidative activity, Fe-complex and surface complex forming properties of humic substances in dependence of pH of environment and the abundance of sorptionally active clay minerals. In environments having a relatively low pH and containing clay minerals (I-M- and CL-environments) the oxidative activity of humic substances (Hs) on pyrite precursors was greatly prevented however pyrite formation depended on reactive Fe availability as the consequence of complex formation. On the contrary, in environments with a relatively high pH, as it was the calcitic, the oxidative activity of Hs was greatly enhanced, thus oxidizing the sulfur precursors of pyrite. The oxidation degree of organic matter was probably also a consequence of the differing activity of the humic electron-acceptors.
基金the financial support fromtheNSFC(21975055,U2001222,52103352,52120105006,and 51925306)National Key R&D Program of China(2018FYA 0305800)+2 种基金Key Research Program of Chinese Academy of Sciences(XDPB08-2)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2022165)the Fundamental Research Funds for the Central Universities.DFT results described in this article were obtained from the National Supercomputing Centre in Shenzhen(Shenzhen Cloud Computing Centre).
文摘By employing the asymmetric end-group engineering,an asymmetric nonfused-ring electron acceptor(NFREA)was designed and synthesized.Compared with the symmetric analogs(NoCA-17 and NoCA-18),NoCA-19 possesses broader light absorption range,more coplanarπ-conjugated backbone,and appropriate crystallinity according to the experimental and theoretical results.The organic solar cells based on J52:NoCA-19 exhibited a power conversion efficiency as high as 12.26%,which is much higher than those of J52:NoCA-17(9.50%)and J52:NoCA-18(11.77%),mainly due to more efficient exciton dissociation,better and balanced charge mobility,suppressed recombination loss,shorter charge extraction time,longer charge carrier lifetimes,and more favorable blend film morphology.These findings demonstrate the great potential of asymmetric end-group engineering in exploring low-cost and high-performance NFREAs.
基金the National Natural Science Foundation of China(Nos.52103352,51925306 and 52120105006)National Key R&D Program of China(No.2018FYA 0305800)+3 种基金Key Research Program of Chinese Academy of Sciences(No.XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB28000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2022165)the Fundamental Research Funds for the Central Universities.
文摘Nonfused ring electron acceptors(NFREAs)have attracted much attention due to their concise synthetic routes and low cost.However,developing high-performance NFREAs with simple structure remains a great challenge.In this work,a simple building block(POBT)with noncovalently conformational locks(No CLs)was designed and synthesized.Single-crystal X-ray study indicated the presence of S…O NOCLs in POBT,thus enabling it to possess a coplanar conformation comparable to that of fused-ring CPT.Two novel NFREAs based on CPT and POBT were developed,namely TT-CPT and TT-POBT,respectively.Besides,TT-POBT possessed a smaller Stokes shift and a reduced reorganization energy compared with TT-CPT,indicating the introduction of S…O No CLs can enhance the molecular rigidity even if simplifying the molecular structure.As a result,the TT-POBT-based PSC device afforded an impressive power conversion efficiency of 11.15%,much higher than that of TT-CPT counterpart(7.03%),mainly resulting from the tighterπ-πstacking,improved and balanced charge transport,and more favorable film morphology.This work demonstrates the potential of the simple building block POBT with No CLs towards constructing low-cost and highperformance NFREAs.
基金Natural Science Foundation for Distinguished Young Scholars of Guangdong Province,Grant/Award Number:2021B1515020027Science and Technology Projects in Guangzhou,Grant/Award Number:202201000002+4 种基金Shenzhen Science and Technology Innovation Commission,Grant/Award Numbers:JCYJ202103243104813035,JCYJ20180504165709042GuangDong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110892China Postdoctoral Science Foundation,Grant/Award Number:2021M700062Open Fund of the State Key Laboratory of Luminescent Materials and Devices,Grant/Award Number:2022-skllmd-17X.G.,H.S.,and Y.J.are thankful for the financial support from the Songshan Lake Materials Laboratory,Grant/Award Number:2021SLABFK03。
文摘The power conversion efficiencies(PCEs)of organic solar cells(OSCs)have improved considerably in recent years with the development of fused-ring electron acceptors(FREAs).Currently,FREAs-based OSCs have achieved high PCEs of over 19%in single-junction OSCs.Whereas the relatively high synthetic complexity and the low yield of FREAs typically result in high production costs,hindering the commercial application of OSCs.In contrast,noncovalently fused-ring electron acceptors(NFREAs)can compensate for the shortcomings of FREAs and facilitate large-scale industrial production by virtue of the simple structure,facile synthesis,high yield,low cost,and reasonable efficiency.At present,OSCs based on NFREAs have exceeded the PCEs of 15%and are expected to reach comparable efficiency as FREAs-based OSCs.Here,recent advances in NFREAs in this review provide insight into improving the performance of OSCs.In particular,this paper focuses on the effect of the chemical structures of NFREAs on the molecule conformation,aggregation,and packing mode.Various molecular design strategies,such as core,side-chain,and terminal group engineering,are presented.In addition,some novel polymer acceptors based on NFREAs for all-polymer OSCs are also introduced.In the end,the paper provides an outlook on developing efficient,stable,and low-cost NFREAs for achieving commercial applications.
基金NSFC,Grant/Award Numbers:52120105006,52103352,51925306National Key R&D Program of China,Grant/Award Number:2018FYA 0305800Youth Innovation Promotion Association of Chinese Academy of Sciences,Grant/Award Number:2022165。
文摘Organic solar cells(OSCs)have attracted extensive attention from both academia and industry in recent years due to their remarkable improvement in power conversion efficiency(PCE).However,the Golden Triangle(the balance of efficiency-stability-cost)required for large-scale industrialization of OSCs still remains a great challenge.Here,a new nonfused-ring electron acceptor(NFREA)BF and its polymerized counterpart PBF were designed and synthesized,and their photovoltaic performance,storage stability and material cost were systematically investigated.When blended with a widely-used polymer donor PBDB-T,the PBFbased all-polymer solar cell(all-PSC)displayed a record high PCE of 12.61%for polymerized NFREAs(PNFREAs)with an excellent stability(95.2%of initial PCE after 800 h storage),superior to the BF counterpart.Impressively,PBF-based allPSC possesses the highest industrial figure-of-merit(i-FOM)value of 0.309 based on an efficiency-stability-cost evaluation,in comparison to several representative OSC systems(such as PM6:Y6 and PBDB-T:PZ1).This work provides an insight into the balance of efficiency,stability,and cost,and also indicates that the PNFREAs are promising materials toward the commercial application of OSCs.
基金Project(2022LSL050102)supported by the Laoshan Laboratory,China。
文摘Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard electrode potentials,which may lead to differences in corrosion,but their effects on corrosion by the same bacteria have not been reported.The corrosion of Q235 steel affected by Pseudodesulfovibrio cashew(P.cashew)in the sulfate and nitrate media under carbon starvation was studied.It was found that sulfate and nitrate did not lead to differences in corrosion under abiotic conditions.However,P.cashew promoted corrosion in both cases,and the consumption of H_(2)was the main mechanism for MIC.In addition,corrosion was more severe in the sulfate media.The higher corrosivity of P.cashew with sulfate as the electron acceptor is closely related to the higher number of sessile cells in the biofilm,higher bacterial motility,more hydrogen production pathways,and the increased gene expression of enzymes related to energy synthesis.
基金National Key Research and Development Program,Grant/Award Number:2019YFA0705900National Natural Science Foundation of China,Grant/Award Numbers:22275058,U20A6002,22109046+1 种基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2022B1515120008,2022A1515011417Guangdong Innovative and Entrepreneurial Research Team Program,Grant/Award Number:2019ZT08L075。
文摘Nonfused ring electron acceptors(NFREAs)are promising candidates for future commercialization of organic solar cells(OSCs)due to their simple synthesis.Still,the power conversion efficiencies(PCEs)of NFREA-based OSCs have large room for improvement.In this work,by merging end group halogenation and side chain engineering,we developed four A-D-A’-D-A type NFREAs,which we refer to as EH-4F,C4-4F,EH-4Cl,and C4-4Cl.Single crystal X-ray diffraction revealed that multiple intermolecular S⋅⋅⋅F interactions between cyclopentadithiophene and 5,6-difluoro-3-(dicyanomethylene)indanone could cause an unfavorable dimer formation,leading to ineffectiveπ-πstackings in EH-4F and C4-4F,whereas no such dimer was found in EH-4Cl and C4-4Cl after replacing with 5,6-dichloro-3-(dicyanomethylene)indanone.Moreover,although the shorter n-butyl side chain resulted in a closer molecular packing in C4-4Cl,EH-4Cl(2-ethylhexyl substitution)with proper crystallinity exhibited enhanced face-on orientation in thin film,which is favorable for vertical charge transport and further reducing charge recombination.As a result,a PCE of 13.0%is obtained for EH-4Cl-based OSC with a fill factor of 0.70.This work highlights the importance of molecular packing and orientation control toward future high-performance A-D-A’-D-A type NFREAs.
基金financial support from the Ministry of Science and Technology of China(2019YFA0705900)National Natural Science Foundation of China(U20A6002,22275058,and 22109046)+2 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08L075)Guangdong Basic and Applied Basic Research Foundation(2022B1515120008)the Start-up Founding Research and Cultivation Project funded by Ningbo University of Technology(2022KQ65 and 2022TS03)。
基金financially supported by the Ministry of Science and Technology of China (No. 2014CB643501)the National Natural Science Foundation of China (Nos. 21634004 and 51403070)+1 种基金the Foundation of Guangzhou Science and Technology Project (No. 201707020019)Zhi-Cheng Hu thanks the financial support from China Postdoctoral Science Foundation (No. 2017M622684)
文摘We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diethynylbenzene(para-linkage)and 1,3-diethynylbenzene(meta-linkage),isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained.It was found that para-linked conjugated polymer(PA)showed better solubility,strongerπ-πstacking,more favorable blend morphology,and better photovoltaic performance than those of meta-linked conjugated polymers(PM)did.Device based on PTB7-Th:PA(PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl})showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA(3.29%versus 0.92%).Moreover,the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy.By copolymerizing a small amount of meta-linkages into PA,the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density(Jsc)and fill factor(FF),resulting in an improved power conversion efficiency(PCE)of 4.03%.