We present a precise measurement of a weak radio frequency electric field with a frequency of ■3 GHz employing a resonant atomic probe that is constituted with a Rydberg cascade three-level atom, including a cesium g...We present a precise measurement of a weak radio frequency electric field with a frequency of ■3 GHz employing a resonant atomic probe that is constituted with a Rydberg cascade three-level atom, including a cesium ground state |6S(1/2)〉,an excited state |6P(3/2)〉, and Rydberg state |nD(5/2)〉. Two radio frequency(RF) electric fields, noted as local and signal fields, couple the nearby Rydberg transition. The two-photon resonant Rydberg electromagnetically induced transparency(Rydberg-EIT) is employed to directly read out the weak signal field having hundreds of k Hz difference between the local and signal fields that is encoded in the resonant microwave-dressed Rydberg atoms. The minimum detectable signal fields of ESmin= 1.36 ± 0.04 mV/m for 2.18 GHz coupling |68D(5/2)〉→ |69P(3/2)〉 transition and 1.33 ± 0.02 mV/m for 1.32 GHz coupling |80D(5/2)〉→ |81P(3/2)〉 transition are obtained, respectively. The bandwidth dependence is also investigated by varying the signal field frequency and corresponding -3 dB bandwidth of 3 MHz is attained. This method can be employed to perform a rapid and precise measurement of the weak electric field, which is important for the atom-based microwave metrology.展开更多
This paper investigates the control role of the relative phase between the probe and driving fields on the gain, dispersion and populations in an open A system with spontaneously generated coherence (SGC). It shows ...This paper investigates the control role of the relative phase between the probe and driving fields on the gain, dispersion and populations in an open A system with spontaneously generated coherence (SGC). It shows that by adjusting the value of the relative phase, a change from lasing with inversion to lasing without inversion can be realized; the values and frequency spectrum regions of the inversionless gain and dispersion can be obviously varied; high refractive index with zero absorption and electromagnetically induced transparency can be achieved. It is also found that when the driving field is resonant, the shapes of the dispersion and the gain curves versus the probe detuning are very similar if the relative phase of the dispersion lags π/2 than that of the gain, however for the off-resonant driving field the similarity will disappear; the gain, dispersion and populations are periodical functions of the relative phase, the modulation period is always 2π; the contribution of SGC to the inversionless gain and dispersion is much larger than that of the dynamically induced coherence.展开更多
The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cel...The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry-P6rot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell.展开更多
We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the m...We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the microwave(MW)electric field.In addition to the two zero-crossing points interval△f_(zeros),the dispersion signal has two positive maxima with an interval defined as the shoulder interval△f_(sho),which is theoretically expected to be used to measure a much weaker MW electric field.The relationship of the MW field strength E_(MW)and△f_(sho)is experimentally studied at the MW frequencies of 31.6 GHz and 9.2 GHz respectively.The results show that△f_(sho)can be used to characterize the much weaker E_(MW)than that of△f_(zeros)and the traditional EIT–AT splitting interval△f_(m);the minimum E_(MW)measured by△f_(sho)is about 30 times smaller than that by△f_(m).As an example,the minimum E_(MW)at 9.2 GHz that can be characterized by△f_(sho)is 0.056 mV/cm,which is the minimum value characterized by the frequency interval using a vapor cell without adding any auxiliary fields.The proposed method can improve the weak limit and sensitivity of E_(MW)measured by the spectral frequency interval,which is important in the direct measurement of weak E_(MW).展开更多
The strength of microwave(MW)electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter–Towns(EIT-AT)technique,when its frequency is resonant or nearl...The strength of microwave(MW)electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter–Towns(EIT-AT)technique,when its frequency is resonant or nearly-resonant with the Rydberg transition frequency.As the detuning of MW field increases,one of the transmission peaks(single peak)is easier to measure due to its increased amplitude.It can be found that the central symmetry point of the two transmission peaks f_(1/2)is only related to the detuning of MW field△_(MW)and central symmetry point f_(0)of resonant MW field,satisfying the relation f_(1/2)=△_(MW)/2+f_(0).Thus,we demonstrate a single transmission peak method that the MW E-field can be determined by interval between the position of single peak and f_(1/2).We use this method to measure continuous frequencies in a band from-200 MHz to 200 MHz of the MW field.The experimental results and theoretical analysis are presented to describe the effectiveness of this method.For 50 MHz<△_(MW)<200 MHz,this method solves the problem that the AT splitting cannot be measured by using the standard EIT-AT techniques or multiple atomic-level Rydberg atom schemes.展开更多
We theoretically study the transparency and amplification of a weak probe field applied to the cavity in hybrid systems formed by a driven superconducting circuit QED system and a mechanical resonator,or a driven opto...We theoretically study the transparency and amplification of a weak probe field applied to the cavity in hybrid systems formed by a driven superconducting circuit QED system and a mechanical resonator,or a driven optomechanical system and a superconducting qubit.We find that both the mechanical resonator and the superconducting qubit can result in the transparency to a weak probe field in such hybrid systems when a strong driving field is applied to the cavity.We also find that the weak probe field can be amplified in some parameter regimes.We further study the statistical properties of the output field via the degrees of second-order coherence.We find that the nonclassicality of the output field strongly depends on the system parameters.Our studies show that one can control single-photon transmission in the optomechanical system via a tunable artificial atom or in the circuit QED system via a mechanical resonator.展开更多
A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is nu- merically studied in this paper. The proposed structure consists of a graphene layer composed of cou...A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is nu- merically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect cou- pling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators.展开更多
The main characteristic feature of deep penetration laser beam welding is a large temperature difference between the plasma cavity(keyhole)in the weld pool centre and the melting/solidification front.Large temperature...The main characteristic feature of deep penetration laser beam welding is a large temperature difference between the plasma cavity(keyhole)in the weld pool centre and the melting/solidification front.Large temperature gradients in the weld pool result in very intensive thermocapillary(Marangoni)convection.The weld pool surface width becomes very large and unstable.However,an externally applied oscillating magnetic field can stabilize the surface of the melt.In the present work this technology was used to stabilize the weld pool surface in partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 aluminium alloy in PA position.An AC magnet was mounted on the laser welding head.The oscillating magnetic field was oriented perpendicular to the welding direction.It was found that the AC magnetic field can drastically reduce the surface roughness of welds.X-ray image analysis shows a drastic reduction of welds porosity.This effect can be explained as a result of electromagnetic rectification of the melt.展开更多
The radio-frequency modulated electromagnetically induced transparency(EIT) in a ladder three-level system with Rydberg state is studied. Under the influence of a fast radio-frequency field, the EIT peak splits into a...The radio-frequency modulated electromagnetically induced transparency(EIT) in a ladder three-level system with Rydberg state is studied. Under the influence of a fast radio-frequency field, the EIT peak splits into a series of sidebands.When attaching a power-frequency electric field directly to the fast radio-frequency field, the odd-order sidebands of the Rydberg-EIT oscillate sensitively with the power-frequency field. The oscillation frequency is equal to twice the power frequency;the oscillation amplitude is monotonically increasing with the amplitude of the power-frequency field when the change of Stark-shift is smaller than the radio frequency. Our work paves the way for measurement of power-frequency electric field based on Rydberg atoms.展开更多
Metasurface analogue of the phenomenon of electromagnetically induced transparency(EIT)that is originally observed in atomic gases offers diverse applications for new photonic components such as nonlinear optical unit...Metasurface analogue of the phenomenon of electromagnetically induced transparency(EIT)that is originally observed in atomic gases offers diverse applications for new photonic components such as nonlinear optical units,slow-light devices,and biosensors.The development of functional integrated photonic devices requires an active control of EIT in metasurfaces.We demonstrate a reversible switching of the metasurface-induced transparency in the near-infrared region by incorporating a nonvolatile phase change material,Ge2Sb2Te5,into the metasurface design.This leads to an ultrafast reconfigurable transparency window under an excitation of a nanosecond pulsed laser.The measurement agrees well with both theoretical calculation and finite-difference time-domain numerical simulation.Our work paves the way for dynamic metasurface devices such as reconfigurable slow light and biosensing.展开更多
The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under...The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under certain conditions such a dense gas can exhibit simultaneously negative permittivity and negative permeability, and negligibly small loss.展开更多
Based on the Rydberg cascade electromagnetically induced transparency,we propose a simultaneous dual-wavelength locking method for Rydberg atomic sensing at room temperature.The simplified frequency-locking configurat...Based on the Rydberg cascade electromagnetically induced transparency,we propose a simultaneous dual-wavelength locking method for Rydberg atomic sensing at room temperature.The simplified frequency-locking configuration uses only one signal generator and one electro-optic modulator,realizing real-time feedback for both lasers.We studied the effect of the different probe and coupling laser powers on the error signal.In addition,the Allan variance and a 10 kHz amplitudemodulated signal are introduced to evaluate the performance of the laser frequency stabilization.In principle,the laser frequency stabilization method presented here can be extended to any cascade Rydberg atomic system.展开更多
In this paper, based on the constructive interference of plasmonic dipolar and quadrupolar modes, a classical analogue of electromagnetically induced absorption (EIA) is demonstrated theoretically in a stacked metam...In this paper, based on the constructive interference of plasmonic dipolar and quadrupolar modes, a classical analogue of electromagnetically induced absorption (EIA) is demonstrated theoretically in a stacked metamaterial consisting of a short metal strip (which acts as a bright resonator) and a long metal strip (acting as a dark resonator), which has been reported to support the electromagnetically induced transparency (EIT) effect. The transition from EIA to EIT can be clearly observed in the absorbance spectra via varying the vertical spacing between two resonant oscillators. With the help of the coupled two-oscillator model, the phase shift between the bright and dark resonance modes is calculated by fitting the simulated absorbance spectra, which reveals the physical mechanisms behind constructive and destructive interference effects in EIT/EIA metamaterials.展开更多
A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT ...A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a threelevel atomic system coupled by standing wave.We show an accurate theoretical simulation via transfer-matrix theory,automatically accounting for multilayer reflections,thus fully demonstrate the existence of photonic crystal structure in atomic vapor.展开更多
It has been predicted that a driven three-level V atom can emit strongly correlated fluorescence photons in the presence of quantum interference. Here we examine the effects of quantum interference on the intensity co...It has been predicted that a driven three-level V atom can emit strongly correlated fluorescence photons in the presence of quantum interference. Here we examine the effects of quantum interference on the intensity correlation of fluorescence photons emitted from a driven three-level A atom. Unexpectedly, strong correlation occurs without quantum interference. The quantum interference tends to reduce the correlation function to a normal level. The essential difference between these two cases is traced to the different effects of quantum interference on coherent population trapping (OPT). For the V atom, quantum interference and coherent excitation combine to lead to OPT. For the A atom, however, the quantum interference tends to spoil OPT while the coherent excitation induces the effect.展开更多
The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/A1GaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is sh...The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/A1GaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT to. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications.展开更多
A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz ti...A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.展开更多
We use the relative phase difference of two bichromatic fields of equal frequency differences for the coherent control of spontaneous emission of a three-level atom in the A configuration, diffects such as selective a...We use the relative phase difference of two bichromatic fields of equal frequency differences for the coherent control of spontaneous emission of a three-level atom in the A configuration, diffects such as selective and total cancellation of fluorescence decay are obtained simply by varying the phase difference. The phese dependence of fluorescence spectra is attributed to the fact that the four different field components induce the transitions in a closed loop configuratiou.展开更多
The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam i...The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications.展开更多
The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the...The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the probe response is derived analytically from the optical Bloch equations under steady state condition to study the absorptive properties of the system under probe field propagation through an ensemble of stationary atoms as well as in a Doppler broadened atomic vapor medium.The most striking result is the conversion of electromagnetically induced transparency(EIT)into electromagnetically induced absorption(EIA)as we start switching from weak probe regime to strong probe regime.The dependence of this conversion on residual Doppler averaging due to wavelength mismatch is also shown by choosing the coupling transition as a Rydberg transition.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61475090,61675123,61775124,and 11804202)+1 种基金the State Key Program of National Natural Science of China(Grant Nos.11434007 and 61835007)Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT 17R70)。
文摘We present a precise measurement of a weak radio frequency electric field with a frequency of ■3 GHz employing a resonant atomic probe that is constituted with a Rydberg cascade three-level atom, including a cesium ground state |6S(1/2)〉,an excited state |6P(3/2)〉, and Rydberg state |nD(5/2)〉. Two radio frequency(RF) electric fields, noted as local and signal fields, couple the nearby Rydberg transition. The two-photon resonant Rydberg electromagnetically induced transparency(Rydberg-EIT) is employed to directly read out the weak signal field having hundreds of k Hz difference between the local and signal fields that is encoded in the resonant microwave-dressed Rydberg atoms. The minimum detectable signal fields of ESmin= 1.36 ± 0.04 mV/m for 2.18 GHz coupling |68D(5/2)〉→ |69P(3/2)〉 transition and 1.33 ± 0.02 mV/m for 1.32 GHz coupling |80D(5/2)〉→ |81P(3/2)〉 transition are obtained, respectively. The bandwidth dependence is also investigated by varying the signal field frequency and corresponding -3 dB bandwidth of 3 MHz is attained. This method can be employed to perform a rapid and precise measurement of the weak electric field, which is important for the atom-based microwave metrology.
文摘This paper investigates the control role of the relative phase between the probe and driving fields on the gain, dispersion and populations in an open A system with spontaneously generated coherence (SGC). It shows that by adjusting the value of the relative phase, a change from lasing with inversion to lasing without inversion can be realized; the values and frequency spectrum regions of the inversionless gain and dispersion can be obviously varied; high refractive index with zero absorption and electromagnetically induced transparency can be achieved. It is also found that when the driving field is resonant, the shapes of the dispersion and the gain curves versus the probe detuning are very similar if the relative phase of the dispersion lags π/2 than that of the gain, however for the off-resonant driving field the similarity will disappear; the gain, dispersion and populations are periodical functions of the relative phase, the modulation period is always 2π; the contribution of SGC to the inversionless gain and dispersion is much larger than that of the dynamically induced coherence.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA03044200 and 2016YFF0200104)the National Natural Science Foundation of China(Grant Nos.91536110,61505099,and 61378013)the Fund for Shanxi“331 Project”Key Subjects Construction,China
文摘The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry-P6rot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell.
基金Project supported by Beijing Natural Science Foundation(Grant No.1212014)the National Key Research and Development Program of China(Grant Nos.2017YFA0304900 and 2017YFA0402300)+4 种基金the National Natural Science Foundation of China(Grant Nos.11604334,11604177,and U2031125)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-3)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF201807)the Fundamental Research Funds for the Central UniversitiesYouth Innovation Promotion Association CAS。
文摘We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the microwave(MW)electric field.In addition to the two zero-crossing points interval△f_(zeros),the dispersion signal has two positive maxima with an interval defined as the shoulder interval△f_(sho),which is theoretically expected to be used to measure a much weaker MW electric field.The relationship of the MW field strength E_(MW)and△f_(sho)is experimentally studied at the MW frequencies of 31.6 GHz and 9.2 GHz respectively.The results show that△f_(sho)can be used to characterize the much weaker E_(MW)than that of△f_(zeros)and the traditional EIT–AT splitting interval△f_(m);the minimum E_(MW)measured by△f_(sho)is about 30 times smaller than that by△f_(m).As an example,the minimum E_(MW)at 9.2 GHz that can be characterized by△f_(sho)is 0.056 mV/cm,which is the minimum value characterized by the frequency interval using a vapor cell without adding any auxiliary fields.The proposed method can improve the weak limit and sensitivity of E_(MW)measured by the spectral frequency interval,which is important in the direct measurement of weak E_(MW).
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFF0603704)the National Natural Science Foundation of China(Grant No.62071443)。
文摘The strength of microwave(MW)electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter–Towns(EIT-AT)technique,when its frequency is resonant or nearly-resonant with the Rydberg transition frequency.As the detuning of MW field increases,one of the transmission peaks(single peak)is easier to measure due to its increased amplitude.It can be found that the central symmetry point of the two transmission peaks f_(1/2)is only related to the detuning of MW field△_(MW)and central symmetry point f_(0)of resonant MW field,satisfying the relation f_(1/2)=△_(MW)/2+f_(0).Thus,we demonstrate a single transmission peak method that the MW E-field can be determined by interval between the position of single peak and f_(1/2).We use this method to measure continuous frequencies in a band from-200 MHz to 200 MHz of the MW field.The experimental results and theoretical analysis are presented to describe the effectiveness of this method.For 50 MHz<△_(MW)<200 MHz,this method solves the problem that the AT splitting cannot be measured by using the standard EIT-AT techniques or multiple atomic-level Rydberg atom schemes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10975080,61025022,61174084 and 61134008)
文摘We theoretically study the transparency and amplification of a weak probe field applied to the cavity in hybrid systems formed by a driven superconducting circuit QED system and a mechanical resonator,or a driven optomechanical system and a superconducting qubit.We find that both the mechanical resonator and the superconducting qubit can result in the transparency to a weak probe field in such hybrid systems when a strong driving field is applied to the cavity.We also find that the weak probe field can be amplified in some parameter regimes.We further study the statistical properties of the output field via the degrees of second-order coherence.We find that the nonclassicality of the output field strongly depends on the system parameters.Our studies show that one can control single-photon transmission in the optomechanical system via a tunable artificial atom or in the circuit QED system via a mechanical resonator.
基金supported by the National Natural Science Foundation of China(Grant No.61307052)the Youth Funding for Science&Technology Innovation in Nanjing University of Aeronautics and Astronautics,China(Grant No.NS2014039)+3 种基金the Chinese Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20123218110017)the Innovation Program for Graduate Education of Jiangsu Province,China(Grant Nos.KYLX 0272,CXZZ13 0166,and CXLX13 155)the Open Research Program in National State Key Laboratory of Millimeter Waves of China(Grant No.K201609)the Fundamental Research Funds for the Central Universities of China(Grant No.kfjj20150407)
文摘A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is nu- merically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect cou- pling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators.
基金Item Sponsored by the German Collaborative Industrial Research Program (IGF) and the German Welding Society (DVS) Under Grant Nr.IGF-17.265 N/DVS-06.078
文摘The main characteristic feature of deep penetration laser beam welding is a large temperature difference between the plasma cavity(keyhole)in the weld pool centre and the melting/solidification front.Large temperature gradients in the weld pool result in very intensive thermocapillary(Marangoni)convection.The weld pool surface width becomes very large and unstable.However,an externally applied oscillating magnetic field can stabilize the surface of the melt.In the present work this technology was used to stabilize the weld pool surface in partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 aluminium alloy in PA position.An AC magnet was mounted on the laser welding head.The oscillating magnetic field was oriented perpendicular to the welding direction.It was found that the AC magnetic field can drastically reduce the surface roughness of welds.X-ray image analysis shows a drastic reduction of welds porosity.This effect can be explained as a result of electromagnetic rectification of the melt.
基金supported by the National Natural Science Foundation of China (Grant No. 12274045)the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11647165)the China Postdoctoral Science Foundation Funded Project (Grant No. 2020M673118)。
文摘The radio-frequency modulated electromagnetically induced transparency(EIT) in a ladder three-level system with Rydberg state is studied. Under the influence of a fast radio-frequency field, the EIT peak splits into a series of sidebands.When attaching a power-frequency electric field directly to the fast radio-frequency field, the odd-order sidebands of the Rydberg-EIT oscillate sensitively with the power-frequency field. The oscillation frequency is equal to twice the power frequency;the oscillation amplitude is monotonically increasing with the amplitude of the power-frequency field when the change of Stark-shift is smaller than the radio frequency. Our work paves the way for measurement of power-frequency electric field based on Rydberg atoms.
基金supported by the International Science and Technology Cooperation Program of China(Grant No.2015DFG12630)support from LiaoNing Revitalization Talents Program(Grant No.XLYC1807237)
文摘Metasurface analogue of the phenomenon of electromagnetically induced transparency(EIT)that is originally observed in atomic gases offers diverse applications for new photonic components such as nonlinear optical units,slow-light devices,and biosensors.The development of functional integrated photonic devices requires an active control of EIT in metasurfaces.We demonstrate a reversible switching of the metasurface-induced transparency in the near-infrared region by incorporating a nonvolatile phase change material,Ge2Sb2Te5,into the metasurface design.This leads to an ultrafast reconfigurable transparency window under an excitation of a nanosecond pulsed laser.The measurement agrees well with both theoretical calculation and finite-difference time-domain numerical simulation.Our work paves the way for dynamic metasurface devices such as reconfigurable slow light and biosensing.
基金Project supported by the National Natural Science Foundation(NSF) of China (Nos. 90101024 and 60378037) and the NationalBasic Research Program (973) of China (No. 2004CB719805)
文摘The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under certain conditions such a dense gas can exhibit simultaneously negative permittivity and negative permeability, and negligibly small loss.
基金supported by the National Natural Science Foundation of China(Nos.61901495 and 12104509)the Scientific Research Project of National University of Defense Technology(Nos.ZK19-20 and ZK20-13)。
文摘Based on the Rydberg cascade electromagnetically induced transparency,we propose a simultaneous dual-wavelength locking method for Rydberg atomic sensing at room temperature.The simplified frequency-locking configuration uses only one signal generator and one electro-optic modulator,realizing real-time feedback for both lasers.We studied the effect of the different probe and coupling laser powers on the error signal.In addition,the Allan variance and a 10 kHz amplitudemodulated signal are introduced to evaluate the performance of the laser frequency stabilization.In principle,the laser frequency stabilization method presented here can be extended to any cascade Rydberg atomic system.
基金Project supported by the Research Project for Basic&Forefront Technology of Henan Province,China(Grant No.132300410301)the Key Research Project for Science and Technology of the Education Department of Henan Province,China(Grant No.13B430181)
文摘In this paper, based on the constructive interference of plasmonic dipolar and quadrupolar modes, a classical analogue of electromagnetically induced absorption (EIA) is demonstrated theoretically in a stacked metamaterial consisting of a short metal strip (which acts as a bright resonator) and a long metal strip (acting as a dark resonator), which has been reported to support the electromagnetically induced transparency (EIT) effect. The transition from EIA to EIT can be clearly observed in the absorbance spectra via varying the vertical spacing between two resonant oscillators. With the help of the coupled two-oscillator model, the phase shift between the bright and dark resonance modes is calculated by fitting the simulated absorbance spectra, which reveals the physical mechanisms behind constructive and destructive interference effects in EIT/EIA metamaterials.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574188)the Project for Excellent Research Team of the National Natural Science Foundation of China(Grant No.61121064)
文摘A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a threelevel atomic system coupled by standing wave.We show an accurate theoretical simulation via transfer-matrix theory,automatically accounting for multilayer reflections,thus fully demonstrate the existence of photonic crystal structure in atomic vapor.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60378008 and 10574052.
文摘It has been predicted that a driven three-level V atom can emit strongly correlated fluorescence photons in the presence of quantum interference. Here we examine the effects of quantum interference on the intensity correlation of fluorescence photons emitted from a driven three-level A atom. Unexpectedly, strong correlation occurs without quantum interference. The quantum interference tends to reduce the correlation function to a normal level. The essential difference between these two cases is traced to the different effects of quantum interference on coherent population trapping (OPT). For the V atom, quantum interference and coherent excitation combine to lead to OPT. For the A atom, however, the quantum interference tends to spoil OPT while the coherent excitation induces the effect.
基金supported by the National Natural Science Foundation of China(Grant No.61367003)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.12A140)the Scientific Research Fund of Guizhou Provincial Education Department,China(Grant Nos.KY[2015]384 and KY[2015]446)
文摘The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/A1GaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT to. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61205096 and 61271066)
文摘A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60378008 and 10574052.
文摘We use the relative phase difference of two bichromatic fields of equal frequency differences for the coherent control of spontaneous emission of a three-level atom in the A configuration, diffects such as selective and total cancellation of fluorescence decay are obtained simply by varying the phase difference. The phese dependence of fluorescence spectra is attributed to the fact that the four different field components induce the transitions in a closed loop configuratiou.
基金supported by the National Natural Science Foundation of China(Grants Nos.11004126 and 61275212)the Natural Science Foundation of Shanxi Province,China(Grant No.2011021003-1)
文摘The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications.
基金UGC (ERO) for granting a minor research project (F. No. PSW: 050(2015–16), date-16/11/2016)UGC (New Delhi) for providing research fellowship (JRF-NET, vide sanction No. F.17-124/2008(SAI) dated 22/08/2014)+1 种基金SERB for granting a project under Teaching Associateship for Research Excellence (TARE) scheme (sanction no. TAR/2018/000710)the University Grants Commission (New Delhi) for sanctioning a major research project (F. No-43–527/2014(SR) dated 28/09/2015).
文摘The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the probe response is derived analytically from the optical Bloch equations under steady state condition to study the absorptive properties of the system under probe field propagation through an ensemble of stationary atoms as well as in a Doppler broadened atomic vapor medium.The most striking result is the conversion of electromagnetically induced transparency(EIT)into electromagnetically induced absorption(EIA)as we start switching from weak probe regime to strong probe regime.The dependence of this conversion on residual Doppler averaging due to wavelength mismatch is also shown by choosing the coupling transition as a Rydberg transition.