鉴于外部磁场会对神经元放电活动产生影响,本文讨论了具有磁场作用的四变量ML(Morris and Lecar)神经元模型,利用快慢动力学揭示了其簇放电类型及分岔过程,并分析了随磁通反馈系数变化时系统放电行为.同时以三个环状耦合神经元模型为例...鉴于外部磁场会对神经元放电活动产生影响,本文讨论了具有磁场作用的四变量ML(Morris and Lecar)神经元模型,利用快慢动力学揭示了其簇放电类型及分岔过程,并分析了随磁通反馈系数变化时系统放电行为.同时以三个环状耦合神经元模型为例,通过定义同步判断标准——互相关系数和快慢变量的极大同步差,发现耦合神经元在磁场作用下,很小的耦合强度就可使系统从混沌状态转迁到周期放电模式并能诱导神经元完成从互不相关到簇放电同步再到峰放电同步的转迁.且在合适的双参数范围内,适当耦合强度下系统更容易实现同步,有助于理解在适当耦合连接方式下电磁辐射对神经网络集群放电活动的影响及其同步机理.展开更多
The excitation of surface plasmons (SPs) with a strip grating at the boundary of an unmagnetized overdense plasma has been investigated theoretically and experimentally. An incident electromagnetic radiation was p-p...The excitation of surface plasmons (SPs) with a strip grating at the boundary of an unmagnetized overdense plasma has been investigated theoretically and experimentally. An incident electromagnetic radiation was p-polarized at the frequency of 5 GHz. Experiments showed that when the plasma density was four times higher than the critical density with the grating present, and the SPs could be excited at the boundary of the overdense plasma. Contribution of the glass layer in the formation of the SP dispersion relation was examined. When the incident electromagnetic radiation was coupled into SPs the coupling order with the effective permittivity was simulated qualitatively. We find that the existence of SPs at the boundary of overdense plasma indicates that the reflection coefficient of the incident electromagnetic radiation reaches its minimum and even becomes total absorption. In this work the plasma density was diagnosed by a Langmuir double probe.展开更多
文摘鉴于外部磁场会对神经元放电活动产生影响,本文讨论了具有磁场作用的四变量ML(Morris and Lecar)神经元模型,利用快慢动力学揭示了其簇放电类型及分岔过程,并分析了随磁通反馈系数变化时系统放电行为.同时以三个环状耦合神经元模型为例,通过定义同步判断标准——互相关系数和快慢变量的极大同步差,发现耦合神经元在磁场作用下,很小的耦合强度就可使系统从混沌状态转迁到周期放电模式并能诱导神经元完成从互不相关到簇放电同步再到峰放电同步的转迁.且在合适的双参数范围内,适当耦合强度下系统更容易实现同步,有助于理解在适当耦合连接方式下电磁辐射对神经网络集群放电活动的影响及其同步机理.
文摘The excitation of surface plasmons (SPs) with a strip grating at the boundary of an unmagnetized overdense plasma has been investigated theoretically and experimentally. An incident electromagnetic radiation was p-polarized at the frequency of 5 GHz. Experiments showed that when the plasma density was four times higher than the critical density with the grating present, and the SPs could be excited at the boundary of the overdense plasma. Contribution of the glass layer in the formation of the SP dispersion relation was examined. When the incident electromagnetic radiation was coupled into SPs the coupling order with the effective permittivity was simulated qualitatively. We find that the existence of SPs at the boundary of overdense plasma indicates that the reflection coefficient of the incident electromagnetic radiation reaches its minimum and even becomes total absorption. In this work the plasma density was diagnosed by a Langmuir double probe.