Purpose–The purpose of this paper is to apply a intelligent algorithm to conduct the force tracking control for electrohydraulic servo system(EHSS).Specifically,the adaptive neuro-fuzzy inference system(ANFIS)is sele...Purpose–The purpose of this paper is to apply a intelligent algorithm to conduct the force tracking control for electrohydraulic servo system(EHSS).Specifically,the adaptive neuro-fuzzy inference system(ANFIS)is selected to improve the control performance for EHSS.Design/methodology/approach–Two types of input–output data were chosen to train the ANFIS models.The inputs are the desired and actual forces,and the output is the current.The first type is to set a sinusoidal signal for the current to produce the actual driving force,and the desired force is chosen as same as the actual force.The other type is to give a sinusoidal signal for the desired force.Under the action of the PI controller,the actual force tracks the desired force,and the current is the output of the PI controller.Findings–The models built based on the two types of data are separately named as the ANFIS I controller and the ANFIS II controller.The results reveal that the ANFIS I controller possesses the best performance in terms of overshoot,rise time and mean absolute error and show adaptivity to different tracking conditions,including sinusoidal signal tracking and sudden change signal tracking.Originality/value–This paper is the first time to apply the ANFIS to optimize the force tracking control for EHSS.展开更多
为提高正弦振动模拟试验的控制精度,针对电液振动台受不确定干扰力影响的问题,以单轴电液振动台作为控制对象,使用滑模控制抑制不确定干扰力对正弦振动控制精度的影响,同时加入最小控制综合(Minimal Control Synthesis,MCS)算法补偿系...为提高正弦振动模拟试验的控制精度,针对电液振动台受不确定干扰力影响的问题,以单轴电液振动台作为控制对象,使用滑模控制抑制不确定干扰力对正弦振动控制精度的影响,同时加入最小控制综合(Minimal Control Synthesis,MCS)算法补偿系统在考虑伺服阀动态后滑模控制器的不足,结合三状态控制实现加速度控制。通过MATLAB/Simulink建立控制策略仿真模型进行仿真分析。结果表明:该复合控制策略可以有效抑制干扰力影响并且提高正弦振动控制精度。展开更多
基金This work was supported by the National Key R&D Program of China“The study on Load-bearing and Moving Support Exoskeleton Robot Key Technology and Typical Application”(2017YFB1300502)This work is also supported by the National Natural Science Foundation of China“Research on gait detection and recognition technology of Parkinson’s disease based on all-fiber composite sensors”under Grant 61903280Hubei Key Laboratory of Digital Textile Equipment Open fund“Research on intelligent monitoring clothing based on micro-nano fiber composite sensor”under Grant DTL2019011.
文摘Purpose–The purpose of this paper is to apply a intelligent algorithm to conduct the force tracking control for electrohydraulic servo system(EHSS).Specifically,the adaptive neuro-fuzzy inference system(ANFIS)is selected to improve the control performance for EHSS.Design/methodology/approach–Two types of input–output data were chosen to train the ANFIS models.The inputs are the desired and actual forces,and the output is the current.The first type is to set a sinusoidal signal for the current to produce the actual driving force,and the desired force is chosen as same as the actual force.The other type is to give a sinusoidal signal for the desired force.Under the action of the PI controller,the actual force tracks the desired force,and the current is the output of the PI controller.Findings–The models built based on the two types of data are separately named as the ANFIS I controller and the ANFIS II controller.The results reveal that the ANFIS I controller possesses the best performance in terms of overshoot,rise time and mean absolute error and show adaptivity to different tracking conditions,including sinusoidal signal tracking and sudden change signal tracking.Originality/value–This paper is the first time to apply the ANFIS to optimize the force tracking control for EHSS.
文摘为提高正弦振动模拟试验的控制精度,针对电液振动台受不确定干扰力影响的问题,以单轴电液振动台作为控制对象,使用滑模控制抑制不确定干扰力对正弦振动控制精度的影响,同时加入最小控制综合(Minimal Control Synthesis,MCS)算法补偿系统在考虑伺服阀动态后滑模控制器的不足,结合三状态控制实现加速度控制。通过MATLAB/Simulink建立控制策略仿真模型进行仿真分析。结果表明:该复合控制策略可以有效抑制干扰力影响并且提高正弦振动控制精度。