This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensi...This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic perfor- mance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.展开更多
Electrohydraulic servosystem have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In order to incr...Electrohydraulic servosystem have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In order to increase the reliability, controllability and utilizing the superior speed of response achievable from electrohydraulic systems, further research is required to develop a control software has the ability of overcoming the problems of system nonlinearities. In This paper, a Proportional Integral Derivative (PID) controller is designed and attached to electrohydraulic servo actuator system to control its angular position. The PID parameters are optimized by the Genetic Algorithm (GA). The controller is verified on the state space model of servovalve attached to a rotary actuator by SIMULINK program. The appropriate specifications of the GA for the rotary position control of an actuator system are presented. It is found that the optimal values of the feedback gains can be obtained within 10 generations, which corresponds to about 200 experiments. A new fitness function was implemented to optimize the feedback gains and its efficiency was verified for control such nonlinear servosystem.展开更多
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 51375431 and U 1509204) and the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems (Grant No. GZKF-201503).
文摘This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic perfor- mance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.
文摘Electrohydraulic servosystem have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In order to increase the reliability, controllability and utilizing the superior speed of response achievable from electrohydraulic systems, further research is required to develop a control software has the ability of overcoming the problems of system nonlinearities. In This paper, a Proportional Integral Derivative (PID) controller is designed and attached to electrohydraulic servo actuator system to control its angular position. The PID parameters are optimized by the Genetic Algorithm (GA). The controller is verified on the state space model of servovalve attached to a rotary actuator by SIMULINK program. The appropriate specifications of the GA for the rotary position control of an actuator system are presented. It is found that the optimal values of the feedback gains can be obtained within 10 generations, which corresponds to about 200 experiments. A new fitness function was implemented to optimize the feedback gains and its efficiency was verified for control such nonlinear servosystem.