The study was useful for the treatment of Reactive red 223 (R223) and Coomassie brilliant blue R250 (CBBR250) binary dye system by electrocoagulation process (EC). Moreover, the Al and Fe electrode were used as an ano...The study was useful for the treatment of Reactive red 223 (R223) and Coomassie brilliant blue R250 (CBBR250) binary dye system by electrocoagulation process (EC). Moreover, the Al and Fe electrode were used as an anode and cathode, respectively. The response surface methodology (RSM) was adopted by utilizing central composite design to plan the experimental runs. The EC process was preceded under the effect of operating parameters including pH, NaCl, voltage and electrolysis time. The % color and COD removals were examined as response variables. The removal efficiency of RR223 and CBBR250 dye at optimum values was 89% and 94% and COD removal was 100%. The kinetic study was performed to determine the rate and rate constant. First and second order kinetic models were studied to figure out the exact mechanism of the dye removal using EC process. The estimated cost of the experimental design about 4.486 US$/dm3 was also determined. This study showed that EC process is an economical way for the treatment of waste water.展开更多
文摘The study was useful for the treatment of Reactive red 223 (R223) and Coomassie brilliant blue R250 (CBBR250) binary dye system by electrocoagulation process (EC). Moreover, the Al and Fe electrode were used as an anode and cathode, respectively. The response surface methodology (RSM) was adopted by utilizing central composite design to plan the experimental runs. The EC process was preceded under the effect of operating parameters including pH, NaCl, voltage and electrolysis time. The % color and COD removals were examined as response variables. The removal efficiency of RR223 and CBBR250 dye at optimum values was 89% and 94% and COD removal was 100%. The kinetic study was performed to determine the rate and rate constant. First and second order kinetic models were studied to figure out the exact mechanism of the dye removal using EC process. The estimated cost of the experimental design about 4.486 US$/dm3 was also determined. This study showed that EC process is an economical way for the treatment of waste water.