由电力系统(electric power systems,EPS)、天然气系统(natural-gas systems,NGS)之间的耦合与互联构成的综合能源系统(integrated energy systems,IES),对于构建经济、环保、高效的能源系统至关重要。同时,由于IES中大量的不确定因素,...由电力系统(electric power systems,EPS)、天然气系统(natural-gas systems,NGS)之间的耦合与互联构成的综合能源系统(integrated energy systems,IES),对于构建经济、环保、高效的能源系统至关重要。同时,由于IES中大量的不确定因素,有必要将不确定建模技术应用于IES分析。该文将广泛应用于EPS的概率潮流的概念推广到IES的概率能量流分析中,计及了EPS、NGS之间3方面的耦合:1)燃气轮机组;2)电力驱动加压站;3)能源集线器。在IES稳态能量流的基础上,考虑了电、气、热负荷以及风电场出力的不确定性,并采用蒙特卡罗模拟法求解IES概率能量流。算例分析表明,NGS(或EPS)中不确定性因素会对EPS(或NGS)的概率能量流产生影响;同时NGS能量流方程线性化精度明显低于EPS。展开更多
文摘由电力系统(electric power systems,EPS)、天然气系统(natural-gas systems,NGS)之间的耦合与互联构成的综合能源系统(integrated energy systems,IES),对于构建经济、环保、高效的能源系统至关重要。同时,由于IES中大量的不确定因素,有必要将不确定建模技术应用于IES分析。该文将广泛应用于EPS的概率潮流的概念推广到IES的概率能量流分析中,计及了EPS、NGS之间3方面的耦合:1)燃气轮机组;2)电力驱动加压站;3)能源集线器。在IES稳态能量流的基础上,考虑了电、气、热负荷以及风电场出力的不确定性,并采用蒙特卡罗模拟法求解IES概率能量流。算例分析表明,NGS(或EPS)中不确定性因素会对EPS(或NGS)的概率能量流产生影响;同时NGS能量流方程线性化精度明显低于EPS。