Composite structures are sensitive to impact damage in practical engineering.Electric resistance change method(ERCM)is an ideal technique for damage monitoring of composite structures.Due to the anisotropy of fiber-re...Composite structures are sensitive to impact damage in practical engineering.Electric resistance change method(ERCM)is an ideal technique for damage monitoring of composite structures.Due to the anisotropy of fiber-resin matrix composites,impact location monitoring is difficult,and research on impact location of fiber composite laminates(FRPs)is limited.A preparation method of MXene/CNT/CuNps thin film sensor is proposed.According to the modeling simulation and theoretical calculation,the resistance change characteristics of the thin film sensor are obtained,the relationship between the impact distance and the resistance change is established,and the sensor array is designed.A three-point localization algorithm and a weight function compensation localization algorithm are proposed,which can improve the imaging accuracy of the impact position.The impact point location was observed and analyzed using ultrasonic C-scan technology.The results show that the weight function compensation positioning algorithm can accurately locate the impact of the composite structure,and the error in the X direction is 7.1%,the error in the Y direction is 0.03%,which verifies the effectiveness of the method.展开更多
Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels.These reactions,however,suffer from sluggish kinetics due to a low local concentration of radicals a...Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels.These reactions,however,suffer from sluggish kinetics due to a low local concentration of radicals around the electrocatalyst.A large applied electrode potential can enhance the fuel generation efficiency via enhancing the radical concentration around the electrocatalyst sites,but this comes at the cost of electricity.Here,we report about a~45%saving in energy to achieve an electrochemical hydrogen generation rate of 3×10^(16) molecules cm^(–2)s^(–1)(current density:10 mA/cm^(2))through localized electric field-induced enhancement in the reagent concentration(LEFIRC)at laser-induced periodic surface structured(LIPSS)electrodes.The finite element model is used to simulate the spatial distribution of the electric field to understand the effects of LIPSS geometric parameters in field localization.When the LIPSS patterned electrodes are used as substrates to support Pt/C and RuO_(2) electrocatalysts,the η_(10) overpotentials for HER and OER are decreased by 40.4 and 25%,respectively.Moreover,the capability of the LIPSS-patterned electrodes to operate at significantly reduced energy is also demonstrated in a range of electrolytes,including alkaline,acidic,neutral,and seawater.Importantly,when two LIPSS patterned electrodes were assembled as the anode and cathode into a cell,it requires 330 mVs of lower electric potential with enhanced stability over a similar cell made of pristine electrodes to drive a current density of 10 mA/cm^(2).This work demonstrates a physical and versatile approach of electrode surface patterning to boost electrocatalytic fuel generation performance and can be applied to any metal and semiconductor catalysts for a range of electrochemical reactions.展开更多
基金This work was financially supported by National Natural Science Foundation of China(11902204)Liaoning Revitalization Talents Program(XLYC2007118)+3 种基金Aeronautical Science Foundation(201903054001)Shenyang Youth Technological Innovation Talent Project(RC200030),Shenyang Natural Science Foundation Project(22-315-6-07)Education Department of Liaoning Province’s Item(LJKQZ 20222263)Basic Scientific Research Project of Liaoning Provincial Department of Education(LJKMZ20220566).
文摘Composite structures are sensitive to impact damage in practical engineering.Electric resistance change method(ERCM)is an ideal technique for damage monitoring of composite structures.Due to the anisotropy of fiber-resin matrix composites,impact location monitoring is difficult,and research on impact location of fiber composite laminates(FRPs)is limited.A preparation method of MXene/CNT/CuNps thin film sensor is proposed.According to the modeling simulation and theoretical calculation,the resistance change characteristics of the thin film sensor are obtained,the relationship between the impact distance and the resistance change is established,and the sensor array is designed.A three-point localization algorithm and a weight function compensation localization algorithm are proposed,which can improve the imaging accuracy of the impact position.The impact point location was observed and analyzed using ultrasonic C-scan technology.The results show that the weight function compensation positioning algorithm can accurately locate the impact of the composite structure,and the error in the X direction is 7.1%,the error in the Y direction is 0.03%,which verifies the effectiveness of the method.
基金National Natural Science Foundation of China (grant nos.62134009,62121005)the Innovation Grant of Changchun Institute of Optics,Fine Mechanics and Physics (CIOMP),Jilin Provincial Science and Technology Development Project (grant no:YDZJ202102CXJD002)Bill&Melinda Gates Foundation (grant no:OPP1157723)
文摘Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels.These reactions,however,suffer from sluggish kinetics due to a low local concentration of radicals around the electrocatalyst.A large applied electrode potential can enhance the fuel generation efficiency via enhancing the radical concentration around the electrocatalyst sites,but this comes at the cost of electricity.Here,we report about a~45%saving in energy to achieve an electrochemical hydrogen generation rate of 3×10^(16) molecules cm^(–2)s^(–1)(current density:10 mA/cm^(2))through localized electric field-induced enhancement in the reagent concentration(LEFIRC)at laser-induced periodic surface structured(LIPSS)electrodes.The finite element model is used to simulate the spatial distribution of the electric field to understand the effects of LIPSS geometric parameters in field localization.When the LIPSS patterned electrodes are used as substrates to support Pt/C and RuO_(2) electrocatalysts,the η_(10) overpotentials for HER and OER are decreased by 40.4 and 25%,respectively.Moreover,the capability of the LIPSS-patterned electrodes to operate at significantly reduced energy is also demonstrated in a range of electrolytes,including alkaline,acidic,neutral,and seawater.Importantly,when two LIPSS patterned electrodes were assembled as the anode and cathode into a cell,it requires 330 mVs of lower electric potential with enhanced stability over a similar cell made of pristine electrodes to drive a current density of 10 mA/cm^(2).This work demonstrates a physical and versatile approach of electrode surface patterning to boost electrocatalytic fuel generation performance and can be applied to any metal and semiconductor catalysts for a range of electrochemical reactions.