This paper investigates the relation between the induced electromotive force measured by induction logging tool and the apparent conductivity, and the relation between the apparent conductivity and the formation true ...This paper investigates the relation between the induced electromotive force measured by induction logging tool and the apparent conductivity, and the relation between the apparent conductivity and the formation true conductivity. Assuming the conductivity in Green's function to be the function of the field point coordinate, the apparent conductivity expression of electric-field intensity is derived using Green's formula, and the integral equation has been established representing the relationship of the apparent conductivity with the true conductivity under this condition. The integral equation is analyzed and then leads to the conclusion that the equivalent conductivity is the apparent conductivity and the values of the apparent conductivity function contain the true conductivity, and the method derived the true conductivity from the apparent conductivity around the well axis is put forward. The validity of the approach given in this paper is verified through numerical calculation. On the basis of above means, the transmitter coil produces an electric-field distribution in formation at every point where the induction logging tool moves along a wellbore, and a number of the receiving coils obtain an apparent conductivity distribution; this is what induction electric-field logging is.展开更多
The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field...The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed.展开更多
A new singularity extraction technique is presented to calculate accurately the singular integrals in Time Domain Electric Field Integral Equation (TDEFIE).In singularity extraction pro- cedure,through the aid of the ...A new singularity extraction technique is presented to calculate accurately the singular integrals in Time Domain Electric Field Integral Equation (TDEFIE).In singularity extraction pro- cedure,through the aid of the first order Taylor series of time base function including time-retardation,the singularity of the integrand can be removed.The surface current density and backscattered far-field response of a conducting cube illuminated by a Gaussian plane wave is com- puted using the presented technique.Comparisons are made with the results obtained by the Inverse Discrete Fourier Transform (IDFT) of the frequency domain and the results obtained by using Ve- chinski's time averaging technique,which demonstrate that the presented method with this new time domain singularity extraction technique to solve TDEFIE is very accurate and stable.展开更多
基金supported by the National Science and Technology Major Project (Grant No. 2011ZX05020)
文摘This paper investigates the relation between the induced electromotive force measured by induction logging tool and the apparent conductivity, and the relation between the apparent conductivity and the formation true conductivity. Assuming the conductivity in Green's function to be the function of the field point coordinate, the apparent conductivity expression of electric-field intensity is derived using Green's formula, and the integral equation has been established representing the relationship of the apparent conductivity with the true conductivity under this condition. The integral equation is analyzed and then leads to the conclusion that the equivalent conductivity is the apparent conductivity and the values of the apparent conductivity function contain the true conductivity, and the method derived the true conductivity from the apparent conductivity around the well axis is put forward. The validity of the approach given in this paper is verified through numerical calculation. On the basis of above means, the transmitter coil produces an electric-field distribution in formation at every point where the induction logging tool moves along a wellbore, and a number of the receiving coils obtain an apparent conductivity distribution; this is what induction electric-field logging is.
文摘多尺度复杂电子系统的电磁场问题难以用单一的计算电磁学方法进行高效数值计算.基于区域分解方法和惠更斯等效原理,提出了频域广义传输矩阵(generalized transition matrix,GTM)方法:将系统分解为多个子模块,通过电场积分方程(electric field integreal equation,EFIE)把各个子模块的电磁特性进行提炼,再考虑所有子模块之间的电磁耦合,计算系统整体电磁场分布.GTM方法把多尺度问题转化为尺度相对比较单一的问题进行处理,在分析各种复合结构、非均匀各向异性介质、大型相控阵天线等电磁散射特性时,提供了灵活的解决方案.论文给出了GTM在手征介质、开口腔体以及Vivaldi相控阵天线电磁特性分析中的应用算例,当未知量个数压缩到原来的十分之一时,GTM计算结果与直接用矩量法(methed of moment,MoM)求解的计算结果非常吻合.GTM可以简洁地表示目标问题的电磁散射特征,与传统MoM相比,大幅度减少了基函数的数量,具有较高的计算精度和效率.
文摘The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed.
文摘A new singularity extraction technique is presented to calculate accurately the singular integrals in Time Domain Electric Field Integral Equation (TDEFIE).In singularity extraction pro- cedure,through the aid of the first order Taylor series of time base function including time-retardation,the singularity of the integrand can be removed.The surface current density and backscattered far-field response of a conducting cube illuminated by a Gaussian plane wave is com- puted using the presented technique.Comparisons are made with the results obtained by the Inverse Discrete Fourier Transform (IDFT) of the frequency domain and the results obtained by using Ve- chinski's time averaging technique,which demonstrate that the presented method with this new time domain singularity extraction technique to solve TDEFIE is very accurate and stable.