Study on a new composite of epoxy resin/elastomeric nano-particles (ENP) is re- ported in this paper, which shows that, in comparison with pure epoxy resin and epoxy toughened with CTBN, the composites of epoxy resin/...Study on a new composite of epoxy resin/elastomeric nano-particles (ENP) is re- ported in this paper, which shows that, in comparison with pure epoxy resin and epoxy toughened with CTBN, the composites of epoxy resin/carboxylic nitrile-butadiene ENP and epoxy resin/styrene butadiene vinyl-pyridine ENP possess both higher toughness and heat resistance. Both ENPs used in the study have an average size of less than 100 nm. Study on the epoxy network’s morphology and interface properties suggests that due to the chemical reaction be- tween ENP and epoxy resin and more hydrogen bonds between nitrile groups of the rubber and hydroxyl groups of the epoxy resin, stronger interaction at the larger interface may lead to the observed excellent properties of the epoxy resin toughened with ENP.展开更多
Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the...Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the flexible structures and the unique motion mechanism of the octopus arm. The SRA is fabricated with elastomeric materials, which consists of four series of integrated pneumatic chambers that play similar roles as the muscles in the octopus arm can achieve large bending in various directions with variable stiffness. This SRA displays specified movements via controlling pressure and selecting channels. Moreover, utilizing parallel control, the SRA demonstrates complicated three-dimensional motions. The force response and motion of the SRA are determined both experimentally and computationally. The applications of the present SRA include tightly coiling around the objects because of its large bending deformation (nearly 360°), grasping multiple objects, and adjusting the grabbing mode in accordance with the shape of objects.展开更多
Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power sour...Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power source, they fit easily into a pocket during infusion, allowing patient mobility. Elastomeric pumps are widely used and widely studied experimentally, but they have well-known problems, such as maintaining reliable flow rates and avoiding toxicity or other peak-and-trough effects. Objectives: Our research objective is to develop a realistic theoretical model of an elastomeric pump, analyze its flow rates, determine its toxicity conditions, and otherwise improve its operation. We believe this is the first such theoretical model of an elastomeric pump consisting of an elastic, medicine-filled ball attached to a horizontal catheter. Method: Our method is to model the system as a quasi-Poiseuille flow driven by the pressure drop generated by the elastic sphere. We construct an engineering model of the pressure exerted by an elastic sphere and match it to a solution of the one-dimensional radial Navier-Stokes equation that describes flow through a horizontal, cylindrical tube. Results: Our results are that the model accurately reproduces flow rates obtained in clinical studies. We also discover that the flow rate has an unavoidable maximum, which we call the “toxicity bump”, when the radius of the sphere approaches its terminal, unstretched value—an effect that has been observed experimentally. Conclusions: We conclude that by choosing the properties of an elastomeric pump, the toxicity bump can be restricted to less than 10% of the earlier, relatively constant flow rate. Our model also produces a relation between the length of time that the analgesic fluid infuses and the physical properties of the fluid, of the elastomeric sphere and the tube, and of the blood vessel into which the analgesic infuses. From these, we conclude that elastomeric pumps can be designed, using our simple model, to control inf展开更多
A giant earthquake of magnitude 9.0 occurred in Pacific Ocean off of Tohoku District Japan on March 11,2011. The highest seismic intensity of 7 in JMA scale was recorded in Miyagi. In the Tohoku district, around 230 b...A giant earthquake of magnitude 9.0 occurred in Pacific Ocean off of Tohoku District Japan on March 11,2011. The highest seismic intensity of 7 in JMA scale was recorded in Miyagi. In the Tohoku district, around 230 buildings are seismically isolated (hereafter, SI) mainly by elastomeric isolators (seismic rubber bearings). According to the official survey reports by several organizations (for example), the records of those buildings have verified the effectiveness of the seismic isolation. The response acceleration of the SI buildings was reduced by 30% to 50% of the input ground acceleration. Additionally, the difference of the conditions inside the room between SI and the fixed-base buildings was obvious as well as the damage in main structures of the buildings. The displacements of the isolators by the earthquake were around 200 mm according to the records of the instruments. As a result, the performance of SI buildings and the elastomeric isolators in the Tohoku District -- Off the Pacific Ocean Earthquake 2011 were excellent, and the efficiency of the seismic isolation was verified by the records of many buildings in wide area.展开更多
This paper proposes an innovative low-cost isolator with lightweight and cost-effective features for use in low-rise residential buildings.The low-cost laminated isolator is formed by plastic shims with unsaturated po...This paper proposes an innovative low-cost isolator with lightweight and cost-effective features for use in low-rise residential buildings.The low-cost laminated isolator is formed by plastic shims with unsaturated polyester fiber reinforcement between rubber layers.Performance tests are systematically carried out to characterize the isolator in terms of mechanic behavior(e.g.,compression,shear,and their relationship),dynamic properties(e.g.,damping),and ultimate states.A design guideline and associated criteria of the low-cost isolator are also provided and discussed in this study.To investigate more detailed behavior,a finite element model of the isolator is developed in ABAQUS and calibrated by the experimental data.The research presented in this paper makes significant contributions to the evaluation of the peak stress and strain demands on isolator’s components and provides technical support for the design and manufacturing of this new type of isolator.展开更多
According to the structural characteristics of embedded fluid elastomeric damper and dynamic modeling method of bearingless rotor(BR)system,a time-domain dynamic model based on multilayer elastomeric theory and fluid ...According to the structural characteristics of embedded fluid elastomeric damper and dynamic modeling method of bearingless rotor(BR)system,a time-domain dynamic model based on multilayer elastomeric theory and fluid dynamic equations is developed.The parameters contained in the analysis model are identified by dynamic experiment data of embedded fluid elastomeric damper.The dynamic characteristics curves calculated through dynamic model are compared with those derived from experimental data.The consistent results illustrate that the model can describe the nonlinear relationship between stress and strain of embedded fluid elastomeric damper under different displacement amplitude and frequency.Due to the validity and reliability of the dynamic analysis model,it can be used in aeroelastic characteristics calculation of BR with embedded fluid elastomeric damper for helicopters.展开更多
Elastomeric scaffolds, individually customized to mimic the structural and mechanical properties of natural tissues have been used for tissue regeneration. In this regard, polyester elastic scaffolds with tunable mech...Elastomeric scaffolds, individually customized to mimic the structural and mechanical properties of natural tissues have been used for tissue regeneration. In this regard, polyester elastic scaffolds with tunable mechanical properties and exceptional biological properties have been reported to provide mechanical support and structural integrity for tissue repair. Herein, poly(4-methyl-ε-caprolactone) (PMCL) was first double-terminated by alkynylation (PMCL-DY) as a liquid precursor at room temperature. Subsequently, three-dimensional porous scaffolds with custom shapes were fabricated from PMCL-DY via thiol-yne photocrosslinking using a practical salt template method. By manipulating the Mn of the precursor, the modulus of compression of the scaffold was easily adjusted. As evidenced by the complete recovery from 90% compression, the rapid recovery rate of >500 mm min 1, the extremely low energy loss coefficient of <0.1, and the superior fatigue resistance, the PMCL20-DY porous scaffold was confirmed to harbor excellent elastic properties. In addition, the high resilience of the scaffold was confirmed to endow it with a minimally invasive application potential. In vitro testing revealed that the 3D porous scaffold was biocompatible with rat bone marrow stromal cells (BMSCs), inducing BMSCs to differentiate into chondrogenic cells. In addition, the elastic porous scaffold demonstrated good regenerative efficiency in a 12-week rabbit cartilage defect model. Thus, the novel polyester scaffold with adaptable mechanical properties may have extensive applications in soft tissue regeneration.展开更多
Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer f...Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer from the limited electrical conductivity of current collectors,low charge storage capacities,poor interfacial interactions between elastomers and conductive/active materials,and lack of shape controllability.In this study,we report hierarchically micro/nano-wrinkle-structured elastomeric electrodes with notably high energy storage performance and good mechanical/electrochemical stabilities,simultaneously allowing various form factors.For this study,a swelling/deswelling-involved metal nanoparticle(NP)assembly is first performed on thiol-functionalized polydimethylsiloxane(PDMS)elastomers,generating a micro-wrinkled structure and a conductive seed layer for subsequent electrodeposition.After the assembly of metal NPs,the conformal electrodeposition of Ni and NiCo layered double hydroxides layers with a homogeneous nanostructure on the micro-wrinkled PDMS induces the formation of a micro/nano-wrinkled surface morphology with a large active surface area and high electrical conductivity.Based on this unique approach,the formed elastomeric electrodes show higher areal capacity and superior rate capability than conventional elastomeric electrodes while maintaining their electrical/electrochemical properties under external mechanical deformation.This notable mechanical/electrochemical performance can be further enhanced by using spiral-structured PDMS(stretchability of~500%)and porous-structured PDMS(areal capacity of~280μAh cm^(-2)).展开更多
Elastomeric encapsulation layers are widely used in soft, wearable devices to physically isolate rigid electronic components from external environmental stimuli(e.g., stress) and facilitate device sterilization for re...Elastomeric encapsulation layers are widely used in soft, wearable devices to physically isolate rigid electronic components from external environmental stimuli(e.g., stress) and facilitate device sterilization for reusability. In devices experiencing large deformations, the stress-isolation effect of the top encapsulation layer can eliminate the damage to the electronic components caused by external forces. However, for health monitoring and sensing applications, the strain-isolation effect of the bottom encapsulation layer can partially block the physiological signals of interest and degrade the measurement accuracy. Here, an analytic model is developed for the strain-and stress-isolation effects present in wearable devices with elastomeric encapsulation layers. The soft, elastomeric encapsulation layers and main electronic components layer are modeled as transversely isotropicelastic mediums and the strain-and stress-isolation effects are described using isolation indexes. The analysis and results show that the isolation effects strongly depend on the thickness, density, and elastic modulus of both the elastomeric encapsulation layers and the main electronic component layer. These findings, combined with the flexible mechanics design strategies of wearable devices, provide new design guidelines for future wearable devices to protect them from external forces while capturing the relevant physiological signals underneath the skin.展开更多
In the wave of the Internet era created by computer and communication technology,flexible sensors play an important role in accurately collecting information owing to their excellent flexibility,ductility,freeform ben...In the wave of the Internet era created by computer and communication technology,flexible sensors play an important role in accurately collecting information owing to their excellent flexibility,ductility,freeform bending or folding,and versatile structural shapes.By endowing elastomeric polymers with conductivity,researchers have recently devoted extensive efforts toward developing high-performance flexible sensors based on elastomeric conductive layers and exploring their potential applications in diverse fields ranging from project manufacturing to daily life.This review reports the recent advancements in elastomeric polymers used to make conductive layers,as well as the relationships between elastomeric polymers and the performance and application of flexible sensors are comprehensively summarized.First,the principles and methods for using elastomeric polymers to construct conductive layers are provided.Then,the fundamental design,unique properties,and underlying mechanisms in different flexible sensors(pressure/strain,temperature,humidity)and their related applications are revealed.Finally,this review concludes with a perspective on the challenges and future directions of high-performance flexible sensors.展开更多
Failure analysis and fatigue life prediction are very important in the design procedure to assure the safety and reliability of rubber components. The fatigue life of a railway elastomeric pad is predicted by combinin...Failure analysis and fatigue life prediction are very important in the design procedure to assure the safety and reliability of rubber components. The fatigue life of a railway elastomeric pad is predicted by combining the test of material properties and finite element analysis (FEA). The specially developed chloroprene rubber material’s fatigue life equation is acquired based on uniaxial tensile test and fatigue life tests performed on the dumbbell specimens of the chloroprene rubber. The same chloroprene rubber was developed at Indian Rubber Manufacturer’s Research Association, Thane. The strain distribution contours and the maximum total principal strains of the elastomeric pad at different compressive loads are obtained using finite element analysis method. The software used for the FEA was ANSYS. The three parameter nonlinear hyperelastic Mooney-Rivlin Model and plane 182 elements were used for finite element analysis. The critical region cracks prone to arise are obtained and analysed. Then the maximum first principal elastic strain was used as the fatigue damage parameter, which is substituted in the chloroprene rubber’s fatigue life equation, to predict the fatigue life of an elastomeric pad in the number of cycles at different compressive loads. The results were compared with the technical requirements given by Indian Railway’s Research Designs and Standards Organization. These requirements were achieved up to certain extents. The results were also compared with the data available in the literature and a similarity was observed between the results acquired and literature data. In short, the proposed fatigue life prediction method can shorten the product design cycle, decrease the design and product cost remarkably and improve the quality of an elastomeric pad.展开更多
The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a ...The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content, PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier.展开更多
Seismic isolation systems designed for extreme events may likely experience low to moderate earthquakes during the design life of the structure rather than the extreme event itself.In new seismic building design codes...Seismic isolation systems designed for extreme events may likely experience low to moderate earthquakes during the design life of the structure rather than the extreme event itself.In new seismic building design codes, low and moderate earthquakes are also mandatory to be investigated in Turkey and some other countries. One of the main reasons is to protect the integrity of non-structural elements or machines during these types of earthquakes. The selection of appropriate seismic isolation is typically decided based on their forcedisplacement characteristics and amount of energy dissipation per cycle. The same energy dissipation per cycle(EDC) can be achieved by high force-low displacement or low force-high displacement response. The focus of this research is given to identify the performance of ball rubber bearing isolation systems compared to different or similar EDC units such as elastomeric bearings and lead rubber bearings through a series of shake table tests performed at low to moderate earthquake levels. Shake table tests were conducted on an almost full scale short span bridge. The tests have revealed that the ball rubber bearings are superior to elastomeric bearings in terms of EDC and can match EDC of LRB. However, although LRB and BRB have the same EDC, BRB is more beneficial to use under low to moderate earthquakes since BRB can transmit less force with larger displacement compared to LRB and LRB can sometimes stay in elastic range with an ineffective EDC as a stiffer elastomeric bearing.展开更多
Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six...Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six-membered ring of the indenyl ligands were synthesized. The effect of substituents in the two metallocenes on the propylene polymerization was studied in the presence of methylaluminoxane (MAO) and triisobutylaluminium (TIBA). From the analysis of microstructure determined by C-13-NMR, it was demonstrated that the polymers produced by met-II have higher [mmmm] isotactic sequences than that of met-I. Using a mechanism based on model statistical analysis, it was found that chain-end model was dominant for met-I. However, met-II obeys the concurrent two-sites model during polymerization, which can be attributed to the existence of 'racemic-like' conformer in its system.展开更多
This paper employs a multi-parameter multi-step chaos control method, which is built up on the OGY method, to stabilize desirable UPOs of a gear system with elastomeric web as a high-dimensional and non-hyperbolic cha...This paper employs a multi-parameter multi-step chaos control method, which is built up on the OGY method, to stabilize desirable UPOs of a gear system with elastomeric web as a high-dimensional and non-hyperbolic chaotic system, and the analyses are carried out. Three types of relations between components of a certain control parameter combination are defined in a certain control process. Special emphasis is put on the comparison of control efficiencies of the multi-parameter multi-step method and single-parameter multi-step method. The numerical experiments show the ability to switch between different orbits and the method can be a good chaos control alternative since it provides a more effective UPOs stabilization of high-dimensional and non-hyperbolic chaotic systems than the single-parameter chaos control, and according to the relation between components of each parameter combination, the best combination for chaos control in a certain UPO stabilization process are obtained.展开更多
Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of s...Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of substituents on the nature of the catalysts for the: polymerization of propylene. A mixture of methyl aluminoxane (MAO) and triisobutylaluminum [Al(iBu)(3)] was used as cocatalyst to activate these catalysts. The decrease in steric bulkiness of substituents at 4 and 7 positions of the indenyl ring resulted in an increase of both activity and molecular weight as well as the isotacticity.展开更多
The elastomeric bearings shall not fail nor degrade the durability of the bridge due to the loss of its properties during its service life. Since the elastomeric bearings can be used in the seismic design complementar...The elastomeric bearings shall not fail nor degrade the durability of the bridge due to the loss of its properties during its service life. Since the elastomeric bearings can be used in the seismic design complementarily to seismic devices, even if it is not a seismic isolator, they particularly should secure high shear performance. For elastomeric bearings to behave monolithically, the internal rubber which is located between the steel plates should be single rubber layer. In this study, a series of elastomeric bearings were fabricated and ultimate shear performance was investigated. Some specimens are of single elastomeric layer, the other are of doublefold elastomeric layer. Shear fatigue tests and ultimate shear tests were carried out. Tests results show that the elastomeric bearings whose internal rubber layer is formed by agglomeration of several rubber pads is likely to experience significant loss of its shear performance or early failure.展开更多
A model is considered as a representation of compressive and incompressive elastomeric materials in nonlinear behavior. Applications are done on one hand by the characterisation of polyurethane 60 - 65 shore A (a comp...A model is considered as a representation of compressive and incompressive elastomeric materials in nonlinear behavior. Applications are done on one hand by the characterisation of polyurethane 60 - 65 shore A (a compressive material), and on the other hand by the characterisation of polyurethane 95 shore A and fluorosilicone, both incompressive materials. The Rivlin energy expression is used for incompressive materials. Linear vibrations superposed on static large deformation, which is most often the real using state of elastomeric materials, are studied. Relative experimental and numerical results presented show good predictions.展开更多
For the first time, this paper describes the concentration dependence of the relative dynamic viscosity coefficient of rubber suspensions and the initial viscoelastic modulus of 3D cross-linked elastomers on the maxim...For the first time, this paper describes the concentration dependence of the relative dynamic viscosity coefficient of rubber suspensions and the initial viscoelastic modulus of 3D cross-linked elastomers on the maximum volume filling with solid polydisperse particles. It allows to predict the rheological and mechanical properties of the polymer compositions being developed now. In this paper, we present the first experimental study of the pole of the concurrent lines of the concentration dependence in the coordinates of the linear form. The pole validates the invariant value of the constant of the developed equation and allows the experimental determination of the maximum volume filling of polymer binders filled with separate fractions or polydisperse mixtures. The results of the study are recommended for use in developing new polymer composite materials.展开更多
Patterned SiC and SiCN microstructures were successfully fabricated on the silicon substrates by using polydimethylsiloxane (PDMS) elastometric stamp as template, polycarbosilane (PCS) and polysilazane (PSZ) as precer...Patterned SiC and SiCN microstructures were successfully fabricated on the silicon substrates by using polydimethylsiloxane (PDMS) elastometric stamp as template, polycarbosilane (PCS) and polysilazane (PSZ) as preceramic polymers. The preparing process was followed by precursor infiltration, the curing of the precursor, demolding of the template and pyrolysis of the cured preceramic polymer pattern. It shows that the dimen- sions of the ceramic patterns can be tailored by using the PDMS molds with different di- mensions. The produced ceramic microstructures can be potentially applied in high tem- perature and high pressure environments due to the advanced properties of the SiC and SiCN ceramics.展开更多
基金the Special Funds for Major State Bas ic Research Projects(G1999064800) Funds for Nation“863”Projects(2002AA302510)
文摘Study on a new composite of epoxy resin/elastomeric nano-particles (ENP) is re- ported in this paper, which shows that, in comparison with pure epoxy resin and epoxy toughened with CTBN, the composites of epoxy resin/carboxylic nitrile-butadiene ENP and epoxy resin/styrene butadiene vinyl-pyridine ENP possess both higher toughness and heat resistance. Both ENPs used in the study have an average size of less than 100 nm. Study on the epoxy network’s morphology and interface properties suggests that due to the chemical reaction be- tween ENP and epoxy resin and more hydrogen bonds between nitrile groups of the rubber and hydroxyl groups of the epoxy resin, stronger interaction at the larger interface may lead to the observed excellent properties of the epoxy resin toughened with ENP.
基金This work is supported by the National Natural Science Foundation of China (nos. 11525210, 11621062, and 91748209) and the Fundamental Research Funds for the Central Universities.
文摘Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the flexible structures and the unique motion mechanism of the octopus arm. The SRA is fabricated with elastomeric materials, which consists of four series of integrated pneumatic chambers that play similar roles as the muscles in the octopus arm can achieve large bending in various directions with variable stiffness. This SRA displays specified movements via controlling pressure and selecting channels. Moreover, utilizing parallel control, the SRA demonstrates complicated three-dimensional motions. The force response and motion of the SRA are determined both experimentally and computationally. The applications of the present SRA include tightly coiling around the objects because of its large bending deformation (nearly 360°), grasping multiple objects, and adjusting the grabbing mode in accordance with the shape of objects.
文摘Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power source, they fit easily into a pocket during infusion, allowing patient mobility. Elastomeric pumps are widely used and widely studied experimentally, but they have well-known problems, such as maintaining reliable flow rates and avoiding toxicity or other peak-and-trough effects. Objectives: Our research objective is to develop a realistic theoretical model of an elastomeric pump, analyze its flow rates, determine its toxicity conditions, and otherwise improve its operation. We believe this is the first such theoretical model of an elastomeric pump consisting of an elastic, medicine-filled ball attached to a horizontal catheter. Method: Our method is to model the system as a quasi-Poiseuille flow driven by the pressure drop generated by the elastic sphere. We construct an engineering model of the pressure exerted by an elastic sphere and match it to a solution of the one-dimensional radial Navier-Stokes equation that describes flow through a horizontal, cylindrical tube. Results: Our results are that the model accurately reproduces flow rates obtained in clinical studies. We also discover that the flow rate has an unavoidable maximum, which we call the “toxicity bump”, when the radius of the sphere approaches its terminal, unstretched value—an effect that has been observed experimentally. Conclusions: We conclude that by choosing the properties of an elastomeric pump, the toxicity bump can be restricted to less than 10% of the earlier, relatively constant flow rate. Our model also produces a relation between the length of time that the analgesic fluid infuses and the physical properties of the fluid, of the elastomeric sphere and the tube, and of the blood vessel into which the analgesic infuses. From these, we conclude that elastomeric pumps can be designed, using our simple model, to control inf
文摘A giant earthquake of magnitude 9.0 occurred in Pacific Ocean off of Tohoku District Japan on March 11,2011. The highest seismic intensity of 7 in JMA scale was recorded in Miyagi. In the Tohoku district, around 230 buildings are seismically isolated (hereafter, SI) mainly by elastomeric isolators (seismic rubber bearings). According to the official survey reports by several organizations (for example), the records of those buildings have verified the effectiveness of the seismic isolation. The response acceleration of the SI buildings was reduced by 30% to 50% of the input ground acceleration. Additionally, the difference of the conditions inside the room between SI and the fixed-base buildings was obvious as well as the damage in main structures of the buildings. The displacements of the isolators by the earthquake were around 200 mm according to the records of the instruments. As a result, the performance of SI buildings and the elastomeric isolators in the Tohoku District -- Off the Pacific Ocean Earthquake 2011 were excellent, and the efficiency of the seismic isolation was verified by the records of many buildings in wide area.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2012CB723304)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13057)+1 种基金the Ministry of Education Program for New Century Excellent Talents(Grant No.NCET-11-0914)the National Natural Science Foundation of China(Grant No.51278138)
文摘This paper proposes an innovative low-cost isolator with lightweight and cost-effective features for use in low-rise residential buildings.The low-cost laminated isolator is formed by plastic shims with unsaturated polyester fiber reinforcement between rubber layers.Performance tests are systematically carried out to characterize the isolator in terms of mechanic behavior(e.g.,compression,shear,and their relationship),dynamic properties(e.g.,damping),and ultimate states.A design guideline and associated criteria of the low-cost isolator are also provided and discussed in this study.To investigate more detailed behavior,a finite element model of the isolator is developed in ABAQUS and calibrated by the experimental data.The research presented in this paper makes significant contributions to the evaluation of the peak stress and strain demands on isolator’s components and provides technical support for the design and manufacturing of this new type of isolator.
文摘According to the structural characteristics of embedded fluid elastomeric damper and dynamic modeling method of bearingless rotor(BR)system,a time-domain dynamic model based on multilayer elastomeric theory and fluid dynamic equations is developed.The parameters contained in the analysis model are identified by dynamic experiment data of embedded fluid elastomeric damper.The dynamic characteristics curves calculated through dynamic model are compared with those derived from experimental data.The consistent results illustrate that the model can describe the nonlinear relationship between stress and strain of embedded fluid elastomeric damper under different displacement amplitude and frequency.Due to the validity and reliability of the dynamic analysis model,it can be used in aeroelastic characteristics calculation of BR with embedded fluid elastomeric damper for helicopters.
基金support by the National Key Research and Development Program(2021YFB3800800)the National Natural Science Foundation of China(52273009)+1 种基金the National Natural Science Foundation of China(82271038)the Interdisciplinary Program of Shanghai JiaoTong University(YG2022QN050).
文摘Elastomeric scaffolds, individually customized to mimic the structural and mechanical properties of natural tissues have been used for tissue regeneration. In this regard, polyester elastic scaffolds with tunable mechanical properties and exceptional biological properties have been reported to provide mechanical support and structural integrity for tissue repair. Herein, poly(4-methyl-ε-caprolactone) (PMCL) was first double-terminated by alkynylation (PMCL-DY) as a liquid precursor at room temperature. Subsequently, three-dimensional porous scaffolds with custom shapes were fabricated from PMCL-DY via thiol-yne photocrosslinking using a practical salt template method. By manipulating the Mn of the precursor, the modulus of compression of the scaffold was easily adjusted. As evidenced by the complete recovery from 90% compression, the rapid recovery rate of >500 mm min 1, the extremely low energy loss coefficient of <0.1, and the superior fatigue resistance, the PMCL20-DY porous scaffold was confirmed to harbor excellent elastic properties. In addition, the high resilience of the scaffold was confirmed to endow it with a minimally invasive application potential. In vitro testing revealed that the 3D porous scaffold was biocompatible with rat bone marrow stromal cells (BMSCs), inducing BMSCs to differentiate into chondrogenic cells. In addition, the elastic porous scaffold demonstrated good regenerative efficiency in a 12-week rabbit cartilage defect model. Thus, the novel polyester scaffold with adaptable mechanical properties may have extensive applications in soft tissue regeneration.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT,Ministry of Science and ICT)(NRF-2021R1A2C3004151)Ministry of Education(NRF-2022R1A6A3A01086019)the KU-KIST School Program.
文摘Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer from the limited electrical conductivity of current collectors,low charge storage capacities,poor interfacial interactions between elastomers and conductive/active materials,and lack of shape controllability.In this study,we report hierarchically micro/nano-wrinkle-structured elastomeric electrodes with notably high energy storage performance and good mechanical/electrochemical stabilities,simultaneously allowing various form factors.For this study,a swelling/deswelling-involved metal nanoparticle(NP)assembly is first performed on thiol-functionalized polydimethylsiloxane(PDMS)elastomers,generating a micro-wrinkled structure and a conductive seed layer for subsequent electrodeposition.After the assembly of metal NPs,the conformal electrodeposition of Ni and NiCo layered double hydroxides layers with a homogeneous nanostructure on the micro-wrinkled PDMS induces the formation of a micro/nano-wrinkled surface morphology with a large active surface area and high electrical conductivity.Based on this unique approach,the formed elastomeric electrodes show higher areal capacity and superior rate capability than conventional elastomeric electrodes while maintaining their electrical/electrochemical properties under external mechanical deformation.This notable mechanical/electrochemical performance can be further enhanced by using spiral-structured PDMS(stretchability of~500%)and porous-structured PDMS(areal capacity of~280μAh cm^(-2)).
基金supported by the National Natural Science Foundation of China (Grant Nos. 12172319, 11872326, and 12072057)the Natural Science Foundation of Hunan Province (Grant Nos. 2021JJ30648, and2021JJ30641)+4 种基金the Furong Scholars Programme of Hunan Provincethe Liao Ning Revitalization Talents Program (Grant No. XLYC2007196)the Fundamental Research Funds for the Central Universities (Grant No.DUT20RC(3)032)the National Science Foundation Graduate Research Fellowship (Grant No. 1842165)the Ford Foundation Predoctoral Fellowship。
文摘Elastomeric encapsulation layers are widely used in soft, wearable devices to physically isolate rigid electronic components from external environmental stimuli(e.g., stress) and facilitate device sterilization for reusability. In devices experiencing large deformations, the stress-isolation effect of the top encapsulation layer can eliminate the damage to the electronic components caused by external forces. However, for health monitoring and sensing applications, the strain-isolation effect of the bottom encapsulation layer can partially block the physiological signals of interest and degrade the measurement accuracy. Here, an analytic model is developed for the strain-and stress-isolation effects present in wearable devices with elastomeric encapsulation layers. The soft, elastomeric encapsulation layers and main electronic components layer are modeled as transversely isotropicelastic mediums and the strain-and stress-isolation effects are described using isolation indexes. The analysis and results show that the isolation effects strongly depend on the thickness, density, and elastic modulus of both the elastomeric encapsulation layers and the main electronic component layer. These findings, combined with the flexible mechanics design strategies of wearable devices, provide new design guidelines for future wearable devices to protect them from external forces while capturing the relevant physiological signals underneath the skin.
基金State Key Program of National Natural Science Foundation of China,Grant/Award Number:52130303National Natural Science Foundation of China,Grant/Award Number:51773147。
文摘In the wave of the Internet era created by computer and communication technology,flexible sensors play an important role in accurately collecting information owing to their excellent flexibility,ductility,freeform bending or folding,and versatile structural shapes.By endowing elastomeric polymers with conductivity,researchers have recently devoted extensive efforts toward developing high-performance flexible sensors based on elastomeric conductive layers and exploring their potential applications in diverse fields ranging from project manufacturing to daily life.This review reports the recent advancements in elastomeric polymers used to make conductive layers,as well as the relationships between elastomeric polymers and the performance and application of flexible sensors are comprehensively summarized.First,the principles and methods for using elastomeric polymers to construct conductive layers are provided.Then,the fundamental design,unique properties,and underlying mechanisms in different flexible sensors(pressure/strain,temperature,humidity)and their related applications are revealed.Finally,this review concludes with a perspective on the challenges and future directions of high-performance flexible sensors.
文摘Failure analysis and fatigue life prediction are very important in the design procedure to assure the safety and reliability of rubber components. The fatigue life of a railway elastomeric pad is predicted by combining the test of material properties and finite element analysis (FEA). The specially developed chloroprene rubber material’s fatigue life equation is acquired based on uniaxial tensile test and fatigue life tests performed on the dumbbell specimens of the chloroprene rubber. The same chloroprene rubber was developed at Indian Rubber Manufacturer’s Research Association, Thane. The strain distribution contours and the maximum total principal strains of the elastomeric pad at different compressive loads are obtained using finite element analysis method. The software used for the FEA was ANSYS. The three parameter nonlinear hyperelastic Mooney-Rivlin Model and plane 182 elements were used for finite element analysis. The critical region cracks prone to arise are obtained and analysed. Then the maximum first principal elastic strain was used as the fatigue damage parameter, which is substituted in the chloroprene rubber’s fatigue life equation, to predict the fatigue life of an elastomeric pad in the number of cycles at different compressive loads. The results were compared with the technical requirements given by Indian Railway’s Research Designs and Standards Organization. These requirements were achieved up to certain extents. The results were also compared with the data available in the literature and a similarity was observed between the results acquired and literature data. In short, the proposed fatigue life prediction method can shorten the product design cycle, decrease the design and product cost remarkably and improve the quality of an elastomeric pad.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 20404008, 50373030 and 20490220) the Special Funds for Major State Basic Research Projects of China (No. 2003CB615600) the Ministry of Education of China as a Key Project (No. 104154).
文摘The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content, PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier.
基金supported by TUBITAK through the 110G093 research project and TUBITAK BIDEB 2215 Program
文摘Seismic isolation systems designed for extreme events may likely experience low to moderate earthquakes during the design life of the structure rather than the extreme event itself.In new seismic building design codes, low and moderate earthquakes are also mandatory to be investigated in Turkey and some other countries. One of the main reasons is to protect the integrity of non-structural elements or machines during these types of earthquakes. The selection of appropriate seismic isolation is typically decided based on their forcedisplacement characteristics and amount of energy dissipation per cycle. The same energy dissipation per cycle(EDC) can be achieved by high force-low displacement or low force-high displacement response. The focus of this research is given to identify the performance of ball rubber bearing isolation systems compared to different or similar EDC units such as elastomeric bearings and lead rubber bearings through a series of shake table tests performed at low to moderate earthquake levels. Shake table tests were conducted on an almost full scale short span bridge. The tests have revealed that the ball rubber bearings are superior to elastomeric bearings in terms of EDC and can match EDC of LRB. However, although LRB and BRB have the same EDC, BRB is more beneficial to use under low to moderate earthquakes since BRB can transmit less force with larger displacement compared to LRB and LRB can sometimes stay in elastic range with an ineffective EDC as a stiffer elastomeric bearing.
基金This project was supported by the National Natural Science Foundation of China and the Petrochemical Incorporation of China (Grant number: 29734144).
文摘Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six-membered ring of the indenyl ligands were synthesized. The effect of substituents in the two metallocenes on the propylene polymerization was studied in the presence of methylaluminoxane (MAO) and triisobutylaluminium (TIBA). From the analysis of microstructure determined by C-13-NMR, it was demonstrated that the polymers produced by met-II have higher [mmmm] isotactic sequences than that of met-I. Using a mechanism based on model statistical analysis, it was found that chain-end model was dominant for met-I. However, met-II obeys the concurrent two-sites model during polymerization, which can be attributed to the existence of 'racemic-like' conformer in its system.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2009AA04Z404)
文摘This paper employs a multi-parameter multi-step chaos control method, which is built up on the OGY method, to stabilize desirable UPOs of a gear system with elastomeric web as a high-dimensional and non-hyperbolic chaotic system, and the analyses are carried out. Three types of relations between components of a certain control parameter combination are defined in a certain control process. Special emphasis is put on the comparison of control efficiencies of the multi-parameter multi-step method and single-parameter multi-step method. The numerical experiments show the ability to switch between different orbits and the method can be a good chaos control alternative since it provides a more effective UPOs stabilization of high-dimensional and non-hyperbolic chaotic systems than the single-parameter chaos control, and according to the relation between components of each parameter combination, the best combination for chaos control in a certain UPO stabilization process are obtained.
基金This project has been supported by the National Natural Science Foundation of China and the Petrochemical Incorporation of China (grant number 29734144).
文摘Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of substituents on the nature of the catalysts for the: polymerization of propylene. A mixture of methyl aluminoxane (MAO) and triisobutylaluminum [Al(iBu)(3)] was used as cocatalyst to activate these catalysts. The decrease in steric bulkiness of substituents at 4 and 7 positions of the indenyl ring resulted in an increase of both activity and molecular weight as well as the isotacticity.
文摘The elastomeric bearings shall not fail nor degrade the durability of the bridge due to the loss of its properties during its service life. Since the elastomeric bearings can be used in the seismic design complementarily to seismic devices, even if it is not a seismic isolator, they particularly should secure high shear performance. For elastomeric bearings to behave monolithically, the internal rubber which is located between the steel plates should be single rubber layer. In this study, a series of elastomeric bearings were fabricated and ultimate shear performance was investigated. Some specimens are of single elastomeric layer, the other are of doublefold elastomeric layer. Shear fatigue tests and ultimate shear tests were carried out. Tests results show that the elastomeric bearings whose internal rubber layer is formed by agglomeration of several rubber pads is likely to experience significant loss of its shear performance or early failure.
文摘A model is considered as a representation of compressive and incompressive elastomeric materials in nonlinear behavior. Applications are done on one hand by the characterisation of polyurethane 60 - 65 shore A (a compressive material), and on the other hand by the characterisation of polyurethane 95 shore A and fluorosilicone, both incompressive materials. The Rivlin energy expression is used for incompressive materials. Linear vibrations superposed on static large deformation, which is most often the real using state of elastomeric materials, are studied. Relative experimental and numerical results presented show good predictions.
文摘For the first time, this paper describes the concentration dependence of the relative dynamic viscosity coefficient of rubber suspensions and the initial viscoelastic modulus of 3D cross-linked elastomers on the maximum volume filling with solid polydisperse particles. It allows to predict the rheological and mechanical properties of the polymer compositions being developed now. In this paper, we present the first experimental study of the pole of the concurrent lines of the concentration dependence in the coordinates of the linear form. The pole validates the invariant value of the constant of the developed equation and allows the experimental determination of the maximum volume filling of polymer binders filled with separate fractions or polydisperse mixtures. The results of the study are recommended for use in developing new polymer composite materials.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59972042) Korea National Research Laboratory Program (Grant No. M10400000061-04J0000-06110)the Doctor Innovation Fund of the National University of Defense Technogy in China(2001-2004).
文摘Patterned SiC and SiCN microstructures were successfully fabricated on the silicon substrates by using polydimethylsiloxane (PDMS) elastometric stamp as template, polycarbosilane (PCS) and polysilazane (PSZ) as preceramic polymers. The preparing process was followed by precursor infiltration, the curing of the precursor, demolding of the template and pyrolysis of the cured preceramic polymer pattern. It shows that the dimen- sions of the ceramic patterns can be tailored by using the PDMS molds with different di- mensions. The produced ceramic microstructures can be potentially applied in high tem- perature and high pressure environments due to the advanced properties of the SiC and SiCN ceramics.