An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial visco...An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode II dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.展开更多
The existence of viscosity effect at the interface of double dissimilar materials has an important impact on the distribution of the interface crack-tip field and the properties variety of the interface itself. The si...The existence of viscosity effect at the interface of double dissimilar materials has an important impact on the distribution of the interface crack-tip field and the properties variety of the interface itself. The singularity and viscosity are considered in the crack-tip. The elastic-viscoplastic governing equations of double dissimilar materials at the interface crack-tip field are established. The displacement potential function and boundary condition of interface crack-tip are introduced. The numerical analysis of elastic-viscoplastic/rigid interface for mode Ⅲis worked out. The stress-strain fields are obtained at the crack-tip and the variation rules of solutions are discussed according to each parameter. The numerical results show that the viscosity effect is a main factor of the interface propagating in the crack-tip field, and the interface crack-tip is a viscoplastic field governed by the viscosity coefficient, Mach number (Ma), and singularity exponent.展开更多
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip posses...An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.展开更多
The plane strain compression of a rectangular block is numericallyinvestigated for the study of dynamic shear band development inthermo-elasto-viscoplastic materials from an internal in-homogeneity. As expected, it pl...The plane strain compression of a rectangular block is numericallyinvestigated for the study of dynamic shear band development inthermo-elasto-viscoplastic materials from an internal in-homogeneity. As expected, it plays an important role in triggeringthe onset of shear localization as well as thermal softening. And thecompetition between the strain, strain-rate hardening and thermalsoftening exists throughout the process. It is found that shear banddevelops at a 45-degree angle to the compression axis. In the lightof given patterns of deformation and temperature, shear bandevolution accelerated by thermal softening is retarded by theinertial effects.展开更多
The existence of an evolving microstructure in a 2.9 vol% fumed silica in paraffin oil and polyisobutylene is demonstrated experimentally and via rheological modeling during steady state and large amplitude oscillator...The existence of an evolving microstructure in a 2.9 vol% fumed silica in paraffin oil and polyisobutylene is demonstrated experimentally and via rheological modeling during steady state and large amplitude oscillatory shear flow. The continuously evolving, rebuilding, and breaking down of the microstructure is shown, and correlated through the rheology experiments, thixo-elastovisco-plastic modeling, and small angle light scattering (SALS). All elements are then connected via a global, stochastic optimization algorithm that will provide parameter estimation with a “best-fit” of the steady state and transient data using the well-known Modified Delaware Thixotropic Model, allowing for the comparison of SALS results with experimental values.展开更多
The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplasti...The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode Ⅰ crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode I crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.展开更多
For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading lev...For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading level. In this paper, a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode is proposed using an elastic-viscoplastic constitutive model. The governing equations of propagation crack interface at the crack-tip are given. The numerical analysis is performed for the interface crack of the compression-shear mixed mode by introducing a displacement function and some boundary conditions. The distributed regularities of stress field of the interface crack-tip are discussed with several special parameters. The final results show that the viscosity effect and the frictional contact effect on the crack surface and the mixed-load parameter are important factors in studying the mixed mode interface crack- tip fields. These fields are controlled by the viscosity coefficient, the Mach number, and the singularity exponent.展开更多
基金Project supported by the Doctor Science Research Startup Foundation of Harbin Institute of Technology (No.01502485)
文摘An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode II dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.
基金Project supported by the Ph. D. Programs Foundation of Ministry of Education of China(No. 20060217010)the Fundamental Research Foundation of Harbin Engineering University(No. HEUFT07005)
文摘The existence of viscosity effect at the interface of double dissimilar materials has an important impact on the distribution of the interface crack-tip field and the properties variety of the interface itself. The singularity and viscosity are considered in the crack-tip. The elastic-viscoplastic governing equations of double dissimilar materials at the interface crack-tip field are established. The displacement potential function and boundary condition of interface crack-tip are introduced. The numerical analysis of elastic-viscoplastic/rigid interface for mode Ⅲis worked out. The stress-strain fields are obtained at the crack-tip and the variation rules of solutions are discussed according to each parameter. The numerical results show that the viscosity effect is a main factor of the interface propagating in the crack-tip field, and the interface crack-tip is a viscoplastic field governed by the viscosity coefficient, Mach number (Ma), and singularity exponent.
文摘An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.
基金the National Natural Sciences Foundation of China
文摘The plane strain compression of a rectangular block is numericallyinvestigated for the study of dynamic shear band development inthermo-elasto-viscoplastic materials from an internal in-homogeneity. As expected, it plays an important role in triggeringthe onset of shear localization as well as thermal softening. And thecompetition between the strain, strain-rate hardening and thermalsoftening exists throughout the process. It is found that shear banddevelops at a 45-degree angle to the compression axis. In the lightof given patterns of deformation and temperature, shear bandevolution accelerated by thermal softening is retarded by theinertial effects.
文摘The existence of an evolving microstructure in a 2.9 vol% fumed silica in paraffin oil and polyisobutylene is demonstrated experimentally and via rheological modeling during steady state and large amplitude oscillatory shear flow. The continuously evolving, rebuilding, and breaking down of the microstructure is shown, and correlated through the rheology experiments, thixo-elastovisco-plastic modeling, and small angle light scattering (SALS). All elements are then connected via a global, stochastic optimization algorithm that will provide parameter estimation with a “best-fit” of the steady state and transient data using the well-known Modified Delaware Thixotropic Model, allowing for the comparison of SALS results with experimental values.
基金Project supported by the Ph. D. Programs Foundation of Ministry of Education of China(No.20060217010)
文摘The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode Ⅰ crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode I crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.
基金Project supported by the National Natural Science Foundation of China(No.11302054)the Fundamental Research Funds for the Central Universities(No.HEUCF130216)
文摘For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading level. In this paper, a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode is proposed using an elastic-viscoplastic constitutive model. The governing equations of propagation crack interface at the crack-tip are given. The numerical analysis is performed for the interface crack of the compression-shear mixed mode by introducing a displacement function and some boundary conditions. The distributed regularities of stress field of the interface crack-tip are discussed with several special parameters. The final results show that the viscosity effect and the frictional contact effect on the crack surface and the mixed-load parameter are important factors in studying the mixed mode interface crack- tip fields. These fields are controlled by the viscosity coefficient, the Mach number, and the singularity exponent.