Considering the velocity anisotropy of the solid/fluid relative motion and employment of the BISQ theory based on the one-dimensional porous isotropic case, we establish a two-phase anisotropic elastic wave equation t...Considering the velocity anisotropy of the solid/fluid relative motion and employment of the BISQ theory based on the one-dimensional porous isotropic case, we establish a two-phase anisotropic elastic wave equation to simultaneously include the Biot and the squirt mechanisms in terms of both the basic principles of the fluid’s mass conservation and the elastic-wave dynamical equations in the two-phase anisotropic rock. Numerical results, while the Biot-flow and the squirt-flow effects are simultaneously considered in the transversely isotropic (Tl) poroelastic medium, show that the attenuation of the quasi P-wave and the quasi SV-wave strongly depend on the permeability anisotropy, and the attenuation behavior at low and high frequencies is contrary. Meanwhile, the attenuation and dispersion of the quasi P-wave are also affected seriously by the anisotropic solid/fluid coupling additional density.展开更多
Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A br...Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper.展开更多
The Connolly (1999) elastic impedance (EI) equation is a function of P-wave velocity, S-wave velocity, density, and incidence angle. Conventional inversion methods based on this equation can only extract P-velocit...The Connolly (1999) elastic impedance (EI) equation is a function of P-wave velocity, S-wave velocity, density, and incidence angle. Conventional inversion methods based on this equation can only extract P-velocity, S-velocity, and density data directly and the elastic impedance at different incidence angles are not at the same scale, which makes comparison difficult. We propose a new elastic impedance equation based on the Gray et al. (1999) Zoeppritz approximation using Lamé parameters to address the conventional inversion method's deficiencies. This equation has been normalized to unify the elastic impedance dimensions at different angles and used for inversion. Lamé parameters can be extracted directly from the elastic impedance data obtained from inversion using the linear relation between Lamé parameters and elastic impedance. The application example shows that the elastic parameters extracted using this new method are more stable and correct and can recover the reservoir information very well. The new method is an improvement on the conventional method based on Connolly's equation.展开更多
We developed a new method of measurement for elastic wave velocity of rocks and minerals at high temperature and high pressure in a wedge-type cubic anvil. The shear-wave and other ultrasonic wave can be identified by...We developed a new method of measurement for elastic wave velocity of rocks and minerals at high temperature and high pressure in a wedge-type cubic anvil. The shear-wave and other ultrasonic wave can be identified by full wave phase analysis (FWPA), thus the velocities of compression-wave and shear-wave can be obtained in a single experiment. We have done the measurements of elastic wave velocities on pyrophyllite, etc. at high pressure (0.1—5.5 GPa) and high temperature (ambient temperature 1600℃), the ranges of the pressure and the temperature are in the head among the methods of the wave velocites measurement in laboratory in the world.展开更多
A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR...A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.展开更多
To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression...To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression tests with five pre-peak unloading stress levels to explore the energy storage characteristics of coal.Five types of coals from different mines were tested,and the instantaneous destruction process of the coal specimens under compression loading was recorded using a high speed camera.The results showed a linear relationship between the elastic strain energy density and input energy density,which confirms the linear energy storage law of coal.Based on this linear energy storage law,the peak elastic strain energy density of each coal specimen was obtained precisely.Subsequently,a new energy criterion of coal burst proneness was established,which was called the residual elastic energy index(defined as the difference between the peak elastic strain energy density and post peak failure energy density).Considering the destruction process and actual failure characteristics of coal specimens,the accuracy of evaluating coal burst proneness based on the residual elastic energy index was examined.The results indicated that the residual elastic energy index enables reliable and precise evaluations of the coal burst proneness.展开更多
The Micro- and Nano-mechanics Working Group of the Chinese Society of Theoretical and Applied Mechanics organized a forum to discuss the perspectives, trends, and directions in mechanics of heterogeneous materials in ...The Micro- and Nano-mechanics Working Group of the Chinese Society of Theoretical and Applied Mechanics organized a forum to discuss the perspectives, trends, and directions in mechanics of heterogeneous materials in January 2010. The international journal, Acta Mechanica Solida Sinica, is de- voted to all fields of solid mechanics and relevant disciplines in science, technology, and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. On the occasion of the 30TM anniversary of Acta Mechanica Solida Sinica, its editor-in-chief, Professor Q.S. Zheng invited some of the forum participants to review the state-of-the-art of mechanics of heterogeneous solids, with a particular emphasis on the recent research development results of Chinese scientists. Their reviews are organized into five research areas as reported in different sections of this paper. ~I firstly brings in fo- cus on micro- and nano-mechanics, with regards to several selective topics, including multiscale coupled models and computational methods, nanocrystal superlattices, surface effects, micromechanical damage mechanics, and microstructural evolution of metals and shape memory alloys. ~II shows discussions on multifield coupled mechanical phenomena, e.g., multi-fields actuations of liquid crystal polymer networks, mechanical behavior of materials under radiations, and micromechanics of heterogeneous materials. In ~III, we mainly address the multiscale mechanics of biological nanocomposites, biological adhesive surface mechanics, wetting and dewetting phenomena on microstructured solid surfaces. The phononic crystals and manipulation of elastic waves were elaborated in ~IV. Finally, we conclude with a series of perspectives on solid mechanics. This review will set a primary goal of future science research and engineering application on solid mechanics with the effort of social and economic development.展开更多
Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or- ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the wa...Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or- ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating bio- fouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the sur- face energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films.展开更多
Background:Blood glucose control is closely related to type 2 diabetes mellitus(T2DM)prognosis.This multicenter study aimed to investigate blood glucose control among patients with insulin-treated T2DM in North China ...Background:Blood glucose control is closely related to type 2 diabetes mellitus(T2DM)prognosis.This multicenter study aimed to investigate blood glucose control among patients with insulin-treated T2DM in North China and explore the application value of combining an elastic network(EN)with a machine-learning algorithm to predict glycemic control.Methods:Basic information,biochemical indices,and diabetes-related data were collected via questionnaire from 2787 consecutive participants recruited from 27 centers in six cities between January 2016 and December 2017.An EN regression was used to address variable collinearity.Then,three common machine learning algorithms(random forest[RF],support vector machine[SVM],and back propagation artificial neural network[BP-ANN])were used to simulate and predict blood glucose status.Additionally,a stepwise logistic regression was performed to compare the machine learning models.Results:The well-controlled blood glucose rate was 45.82%in North China.The multivariable analysis found that hypertension history,atherosclerotic cardiovascular disease history,exercise,and total cholesterol were protective factors in glycosylated hemoglobin(HbAlc)control,while central adiposity,family history,T2DM duration,complications,insulin dose,blood pressure,and hypertension were risk factors for elevated HbAlc.Before the dimensional reduction in the EN,the areas under the curve of RF,SVM,and BP were 0.73,0.61,and 0.70,respectively,while these figures increased to 0.75,0.72,and 0.72,respectively,after dimensional reduction.Moreover,the EN and machine learning models had higher sensitivity and accuracy than the logistic regression models(the sensitivity and accuracy of logistic were 0.52 and 0.56;RF:0.79,0.70;SVM:0.84,0.73;BP-ANN:0.78,0.73,respectively).Conclusions:More than half of T2DM patients in North China had poor glycemic control and were at a higher risk of developing diabetic complications.The EN and machine learning algorithms are alternative choices,in addition to the traditional logistic展开更多
This review article summarizes the advances in the surface stress effect in mechanics of nanostructured elements, including nanoparticles, nanowires, nanobeams, and nanofilms, and heterogeneous materials containing na...This review article summarizes the advances in the surface stress effect in mechanics of nanostructured elements, including nanoparticles, nanowires, nanobeams, and nanofilms, and heterogeneous materials containing nanoscale inhomogeneities. It begins with the fundamental formulations of surface mechanics of solids, including the definition of surface stress as a surface excess quantity, the surface constitutive relations, and the surface equilibrium equations. Then, it depicts some theoretical and experimental studies of the mechanical properties of nanostructured elements, as well as the static and dynamic behaviour of cantilever sensors caused by the surface stress which is influenced by adsorption. Afterwards, the article gives a summary of the analytical elasto-static and dynamic solutions of a single as well as multiple inhomogeneities embedded in a matrix with the interface stress prevailing. The effect of surface elasticity on the diffraction of elastic waves is elucidated. Due to the difficulties in the analytical solution of inhomogeneities of complex shapes and configurations, finite element approaches have been developed for heterogeneous materials with the surface stress. Surface stress and surface energy are inherently related to crack propagation and the stress field in the vicinity of crack tips. The solutions of crack prob- lems taking into account surface stress effects are also included. Predicting the effective elastic and plastic responses of heterogeneous materials while taking into account surface and interface stresses has received much attention. The advances in this topic are inevitably delineated. Mechanics of rough surfaces appears to deserve special attention due to its theoretical and practical implications. Some most recent work is reviewed. Finally, some challenges are pointed out. They include the characterization of surfaces and interfaces of real nanomaterials, experimental mea- surements and verification of mechanical parameters of complex surfaces, and the effects of the physi展开更多
The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we est...The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.展开更多
Non-pneumatic tire appears to have advantages over traditional pneumatic tire in terms of flat proof and maintenance free.A mechanical elastic wheel(MEW) with a non-pneumatic elastic outer ring which functions as air ...Non-pneumatic tire appears to have advantages over traditional pneumatic tire in terms of flat proof and maintenance free.A mechanical elastic wheel(MEW) with a non-pneumatic elastic outer ring which functions as air of pneumatic tire was presented.The structure of MEW was non-inflatable integrated configuration and the effect of hinges was accounted for only in tension. To establish finite element model of MEW, various nonlinear factors, such as geometrical nonlinearity, material nonlinearity and contact nonlinearity, were considered. Load characteristic test was conducted by tyre dynamic test-bed to obtain force-deflection curve. And the finite element model was validated through load characteristic test. Natural dynamic characteristics of the MEW and its influencing factors were investigated based on the finite element model. Simulation results show that the finite element model closely matched experimental wheel. The results also show that natural frequency is related to ground constraints, material properties, loads and torques. Influencing factors as above obviously affect the amplitude of mode of vibration, but have little effect on mode of vibration shape. The results can provide guidance for experiment research, structural optimization of MEW.展开更多
Electronic skin is driving the next generation of cutting-edge wearable electronic products due to its good wearability and high accuracy of information acquisition.However,it remains a challenge to fulfill the requir...Electronic skin is driving the next generation of cutting-edge wearable electronic products due to its good wearability and high accuracy of information acquisition.However,it remains a challenge to fulfill the requirements on detecting full-range human activities with existing flexible strain sensors.Herein,highly stretchable,sensitive,and multifunctional flexible strain sensors based on MXene-(Ti_(3)C_(2)T_(x)-)composited poly(vinyl alcohol)/polyvinyl pyrrolidone double-network hydrogels were prepared.The uniformly distributed hydrophilic MXene nanosheets formed a three-dimensional conductive network throughout the hydrogel,endowing the flexible sensor with high sensitivity.The strong interaction between the double-network hydrogel matrix and MXene greatly improved the mechanical properties of the hydrogels.The resulting nanocomposited hydrogels featured great tensile performance(2400%),toughness,and resilience.Particularly,the as-prepared flexible pressure sensor revealed ultrahigh sensitivity(10.75 kPa^(-1))with a wide response range(0-61.5 kPa),fast response(33.5 ms),and low limit of detection(0.87 Pa).Moreover,the hydrogel-based flexible sensors,with high sensitivity and durability,could be employed to monitor fullrange human motions and assembled into some aligned devices for subtle pressure detection,providing enormous potential in facial expression and phonation recognition,handwriting verification,healthy diagnosis,and wearable electronics.展开更多
Ball bearings play an important role in various rotating machineries,but the complicated kinematic and tribological features of ball bearings make many aspects of their operating behaviors still inconclusive.Most theo...Ball bearings play an important role in various rotating machineries,but the complicated kinematic and tribological features of ball bearings make many aspects of their operating behaviors still inconclusive.Most theoretical analyses of ball bearings up to date are based on either the hypothesis of race control or other empirical models to determine the ball motion of ball bearings,but none of these strategies can reveal and consequently employ the intrinsic coupling mechanism between the spin and the tangential traction of contacting bodies rolling upon one another.To remedy the deficiency of current analytical models for ball bearing analysis,the rolling contact theory is employed to establish an explicit link between motions and interactions within ball bearings.A differential slip model is established to precisely define the slip component due to the significant curvature of the common contact patches between the ball and inner/outer raceways.The creepage and the spin ratio are formulated to accurately define the relative rigid motion between the ball and the inner/outer raceway.Then a quasi-static analytical model is established that can accurately determine the motions of the balls and races of the ball bearing.It can also give a vivid description of the slip and traction distributions within the contact area.The analytical model can be effectively used to analyze the operational conditions and tribological features of solid-lubricated ball bearings.It can also be used optimize the construction of ball bearings for specific applications.展开更多
文摘Considering the velocity anisotropy of the solid/fluid relative motion and employment of the BISQ theory based on the one-dimensional porous isotropic case, we establish a two-phase anisotropic elastic wave equation to simultaneously include the Biot and the squirt mechanisms in terms of both the basic principles of the fluid’s mass conservation and the elastic-wave dynamical equations in the two-phase anisotropic rock. Numerical results, while the Biot-flow and the squirt-flow effects are simultaneously considered in the transversely isotropic (Tl) poroelastic medium, show that the attenuation of the quasi P-wave and the quasi SV-wave strongly depend on the permeability anisotropy, and the attenuation behavior at low and high frequencies is contrary. Meanwhile, the attenuation and dispersion of the quasi P-wave are also affected seriously by the anisotropic solid/fluid coupling additional density.
基金financially supported by the National High Technology Research and Development Program of China (No.2015AA033702)the National Basic Research Program of China (Nos.2012CB619103 and 2012CB933901)the National Natural Science Foundation of China (Nos.51271180 and 51271182)
文摘Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper.
文摘The Connolly (1999) elastic impedance (EI) equation is a function of P-wave velocity, S-wave velocity, density, and incidence angle. Conventional inversion methods based on this equation can only extract P-velocity, S-velocity, and density data directly and the elastic impedance at different incidence angles are not at the same scale, which makes comparison difficult. We propose a new elastic impedance equation based on the Gray et al. (1999) Zoeppritz approximation using Lamé parameters to address the conventional inversion method's deficiencies. This equation has been normalized to unify the elastic impedance dimensions at different angles and used for inversion. Lamé parameters can be extracted directly from the elastic impedance data obtained from inversion using the linear relation between Lamé parameters and elastic impedance. The application example shows that the elastic parameters extracted using this new method are more stable and correct and can recover the reservoir information very well. The new method is an improvement on the conventional method based on Connolly's equation.
基金Project supported by the National Natural Science Foundation of China.
文摘We developed a new method of measurement for elastic wave velocity of rocks and minerals at high temperature and high pressure in a wedge-type cubic anvil. The shear-wave and other ultrasonic wave can be identified by full wave phase analysis (FWPA), thus the velocities of compression-wave and shear-wave can be obtained in a single experiment. We have done the measurements of elastic wave velocities on pyrophyllite, etc. at high pressure (0.1—5.5 GPa) and high temperature (ambient temperature 1600℃), the ranges of the pressure and the temperature are in the head among the methods of the wave velocites measurement in laboratory in the world.
基金supported by the National Natural Science Foundation of China (No. 50768001)the Foundation of New Century Excellent Talents in University (No. NCET-04-0834)the Guangxi Natural Science Foundation (No. 0728026)
文摘A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.
基金This work was supported by the National Natural Science Foundation of China(No.41877272)the Fundamental Research Funds for the Central Universities of Southeast University(No.2242021R10080).
文摘To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression tests with five pre-peak unloading stress levels to explore the energy storage characteristics of coal.Five types of coals from different mines were tested,and the instantaneous destruction process of the coal specimens under compression loading was recorded using a high speed camera.The results showed a linear relationship between the elastic strain energy density and input energy density,which confirms the linear energy storage law of coal.Based on this linear energy storage law,the peak elastic strain energy density of each coal specimen was obtained precisely.Subsequently,a new energy criterion of coal burst proneness was established,which was called the residual elastic energy index(defined as the difference between the peak elastic strain energy density and post peak failure energy density).Considering the destruction process and actual failure characteristics of coal specimens,the accuracy of evaluating coal burst proneness based on the residual elastic energy index was examined.The results indicated that the residual elastic energy index enables reliable and precise evaluations of the coal burst proneness.
文摘The Micro- and Nano-mechanics Working Group of the Chinese Society of Theoretical and Applied Mechanics organized a forum to discuss the perspectives, trends, and directions in mechanics of heterogeneous materials in January 2010. The international journal, Acta Mechanica Solida Sinica, is de- voted to all fields of solid mechanics and relevant disciplines in science, technology, and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. On the occasion of the 30TM anniversary of Acta Mechanica Solida Sinica, its editor-in-chief, Professor Q.S. Zheng invited some of the forum participants to review the state-of-the-art of mechanics of heterogeneous solids, with a particular emphasis on the recent research development results of Chinese scientists. Their reviews are organized into five research areas as reported in different sections of this paper. ~I firstly brings in fo- cus on micro- and nano-mechanics, with regards to several selective topics, including multiscale coupled models and computational methods, nanocrystal superlattices, surface effects, micromechanical damage mechanics, and microstructural evolution of metals and shape memory alloys. ~II shows discussions on multifield coupled mechanical phenomena, e.g., multi-fields actuations of liquid crystal polymer networks, mechanical behavior of materials under radiations, and micromechanics of heterogeneous materials. In ~III, we mainly address the multiscale mechanics of biological nanocomposites, biological adhesive surface mechanics, wetting and dewetting phenomena on microstructured solid surfaces. The phononic crystals and manipulation of elastic waves were elaborated in ~IV. Finally, we conclude with a series of perspectives on solid mechanics. This review will set a primary goal of future science research and engineering application on solid mechanics with the effort of social and economic development.
基金High-Tech Research and Development Program of China (Grant No. 2004AA001520)
文摘Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or- ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating bio- fouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the sur- face energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films.
基金This study was supported by grants from the Ministry of Education of the Humanities and Social Science Project(No.17YJAZH048)the National Natural Science Foundation of China(No.81803333).
文摘Background:Blood glucose control is closely related to type 2 diabetes mellitus(T2DM)prognosis.This multicenter study aimed to investigate blood glucose control among patients with insulin-treated T2DM in North China and explore the application value of combining an elastic network(EN)with a machine-learning algorithm to predict glycemic control.Methods:Basic information,biochemical indices,and diabetes-related data were collected via questionnaire from 2787 consecutive participants recruited from 27 centers in six cities between January 2016 and December 2017.An EN regression was used to address variable collinearity.Then,three common machine learning algorithms(random forest[RF],support vector machine[SVM],and back propagation artificial neural network[BP-ANN])were used to simulate and predict blood glucose status.Additionally,a stepwise logistic regression was performed to compare the machine learning models.Results:The well-controlled blood glucose rate was 45.82%in North China.The multivariable analysis found that hypertension history,atherosclerotic cardiovascular disease history,exercise,and total cholesterol were protective factors in glycosylated hemoglobin(HbAlc)control,while central adiposity,family history,T2DM duration,complications,insulin dose,blood pressure,and hypertension were risk factors for elevated HbAlc.Before the dimensional reduction in the EN,the areas under the curve of RF,SVM,and BP were 0.73,0.61,and 0.70,respectively,while these figures increased to 0.75,0.72,and 0.72,respectively,after dimensional reduction.Moreover,the EN and machine learning models had higher sensitivity and accuracy than the logistic regression models(the sensitivity and accuracy of logistic were 0.52 and 0.56;RF:0.79,0.70;SVM:0.84,0.73;BP-ANN:0.78,0.73,respectively).Conclusions:More than half of T2DM patients in North China had poor glycemic control and were at a higher risk of developing diabetic complications.The EN and machine learning algorithms are alternative choices,in addition to the traditional logistic
基金the support of the National Natural Science Foundation of China (NSFC) through grants Nos.10032010,10072002,10372004,10525209,10872003 and 10932001the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD,Grant No.2007B2)+5 种基金Research Fund for the New Teacher Program of the State Education Ministry of China (Grant No.200800011011)Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry of Chinathe support of NSFC (Grants Nos.10772093 and 10732050)the support of NSFC (Nos.11072186,10902081 and 11021202)973-Program (Nos.2007CB936803 and 2010CB631005)973-Program (No.2007CB707702)
文摘This review article summarizes the advances in the surface stress effect in mechanics of nanostructured elements, including nanoparticles, nanowires, nanobeams, and nanofilms, and heterogeneous materials containing nanoscale inhomogeneities. It begins with the fundamental formulations of surface mechanics of solids, including the definition of surface stress as a surface excess quantity, the surface constitutive relations, and the surface equilibrium equations. Then, it depicts some theoretical and experimental studies of the mechanical properties of nanostructured elements, as well as the static and dynamic behaviour of cantilever sensors caused by the surface stress which is influenced by adsorption. Afterwards, the article gives a summary of the analytical elasto-static and dynamic solutions of a single as well as multiple inhomogeneities embedded in a matrix with the interface stress prevailing. The effect of surface elasticity on the diffraction of elastic waves is elucidated. Due to the difficulties in the analytical solution of inhomogeneities of complex shapes and configurations, finite element approaches have been developed for heterogeneous materials with the surface stress. Surface stress and surface energy are inherently related to crack propagation and the stress field in the vicinity of crack tips. The solutions of crack prob- lems taking into account surface stress effects are also included. Predicting the effective elastic and plastic responses of heterogeneous materials while taking into account surface and interface stresses has received much attention. The advances in this topic are inevitably delineated. Mechanics of rough surfaces appears to deserve special attention due to its theoretical and practical implications. Some most recent work is reviewed. Finally, some challenges are pointed out. They include the characterization of surfaces and interfaces of real nanomaterials, experimental mea- surements and verification of mechanical parameters of complex surfaces, and the effects of the physi
基金provided by the National Natural Science Foundation of China (No. 41071273)
文摘The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.
基金Project(NHA13002)supported by Explore Research Project of the General Armament Department,ChinaProject(11072106)supported by the National Natural Science Foundation of China
文摘Non-pneumatic tire appears to have advantages over traditional pneumatic tire in terms of flat proof and maintenance free.A mechanical elastic wheel(MEW) with a non-pneumatic elastic outer ring which functions as air of pneumatic tire was presented.The structure of MEW was non-inflatable integrated configuration and the effect of hinges was accounted for only in tension. To establish finite element model of MEW, various nonlinear factors, such as geometrical nonlinearity, material nonlinearity and contact nonlinearity, were considered. Load characteristic test was conducted by tyre dynamic test-bed to obtain force-deflection curve. And the finite element model was validated through load characteristic test. Natural dynamic characteristics of the MEW and its influencing factors were investigated based on the finite element model. Simulation results show that the finite element model closely matched experimental wheel. The results also show that natural frequency is related to ground constraints, material properties, loads and torques. Influencing factors as above obviously affect the amplitude of mode of vibration, but have little effect on mode of vibration shape. The results can provide guidance for experiment research, structural optimization of MEW.
基金The work was supported by the National Natural Science Foundation of China(61775095)the Six Talent Peak Innovation Team in Jiangsu Province(TD-SWYY-009)‘Taishan Scholars’Construction Special Fund of Shandong Province.
文摘Electronic skin is driving the next generation of cutting-edge wearable electronic products due to its good wearability and high accuracy of information acquisition.However,it remains a challenge to fulfill the requirements on detecting full-range human activities with existing flexible strain sensors.Herein,highly stretchable,sensitive,and multifunctional flexible strain sensors based on MXene-(Ti_(3)C_(2)T_(x)-)composited poly(vinyl alcohol)/polyvinyl pyrrolidone double-network hydrogels were prepared.The uniformly distributed hydrophilic MXene nanosheets formed a three-dimensional conductive network throughout the hydrogel,endowing the flexible sensor with high sensitivity.The strong interaction between the double-network hydrogel matrix and MXene greatly improved the mechanical properties of the hydrogels.The resulting nanocomposited hydrogels featured great tensile performance(2400%),toughness,and resilience.Particularly,the as-prepared flexible pressure sensor revealed ultrahigh sensitivity(10.75 kPa^(-1))with a wide response range(0-61.5 kPa),fast response(33.5 ms),and low limit of detection(0.87 Pa).Moreover,the hydrogel-based flexible sensors,with high sensitivity and durability,could be employed to monitor fullrange human motions and assembled into some aligned devices for subtle pressure detection,providing enormous potential in facial expression and phonation recognition,handwriting verification,healthy diagnosis,and wearable electronics.
基金supported by National Natural Science Foundation of China (Grant No. 50935002, Grant No. 51105342)
文摘Ball bearings play an important role in various rotating machineries,but the complicated kinematic and tribological features of ball bearings make many aspects of their operating behaviors still inconclusive.Most theoretical analyses of ball bearings up to date are based on either the hypothesis of race control or other empirical models to determine the ball motion of ball bearings,but none of these strategies can reveal and consequently employ the intrinsic coupling mechanism between the spin and the tangential traction of contacting bodies rolling upon one another.To remedy the deficiency of current analytical models for ball bearing analysis,the rolling contact theory is employed to establish an explicit link between motions and interactions within ball bearings.A differential slip model is established to precisely define the slip component due to the significant curvature of the common contact patches between the ball and inner/outer raceways.The creepage and the spin ratio are formulated to accurately define the relative rigid motion between the ball and the inner/outer raceway.Then a quasi-static analytical model is established that can accurately determine the motions of the balls and races of the ball bearing.It can also give a vivid description of the slip and traction distributions within the contact area.The analytical model can be effectively used to analyze the operational conditions and tribological features of solid-lubricated ball bearings.It can also be used optimize the construction of ball bearings for specific applications.