期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的恶意文档可视化检测
1
作者 黄昆 徐洋 +1 位作者 张思聪 李克资 《电子测量技术》 北大核心 2022年第18期126-133,共8页
为了更加准确、快速地检测恶意PDF与DOCX格式文档,提出一种基于深度学习的恶意文档可视化检测方法。该方法通过马尔可夫模型将文档的字节序列转化为三通道的彩色图,从而获取更能区分恶意文档和良性文档的视觉表征,并采用当前主流的Effic... 为了更加准确、快速地检测恶意PDF与DOCX格式文档,提出一种基于深度学习的恶意文档可视化检测方法。该方法通过马尔可夫模型将文档的字节序列转化为三通道的彩色图,从而获取更能区分恶意文档和良性文档的视觉表征,并采用当前主流的EfficientNet-B0模型对提取的可视化特征进行分类。结合迁移学习领域中的微调技术,将ImageNet上的分类权重应用到EfficientNet-B0模型的训练中,加快检测模型的收敛速度,缩短模型的训练时间。实验证明,在两个数据集上,模型的收敛速度快于随机初始化权重的预训练,且模型对恶意PDF文档和恶意DOCX文档的检测准确率分别达到了99.80%和98.14%,优于ResNet34、MobileNetV2等模型。与主流的恶意文档检测工具Wepawet和PJScan相比,所提出的方法具有更优的综合检测性能,进一步验证了所提出方法对恶意文档检测的有效性。 展开更多
关键词 恶意文档 EfficientNet-b0 可视化 马尔可夫模型 迁移学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部