Targeted genome modifications with the Cas9/gRNA system derived from the clustered regularly interspaced short palin- dromic repeat/CRISPR-associated (CRISPR/Cas) system have been successfully used in cultured human...Targeted genome modifications with the Cas9/gRNA system derived from the clustered regularly interspaced short palin- dromic repeat/CRISPR-associated (CRISPR/Cas) system have been successfully used in cultured human cells as well as in most model organisms, including zebrafish (Danio rerio), mouse, and fruit fly (Chang et al., 2013; Cong et al., 2013; Gratz et al., 2013; Hwang et al., 2013; Jao et al., 2013; Shen et al., 2013; Wei et al., 2013). Its application in zebrafish is particu- larly attractive due to the ease of handling this organism and the simple application of this method by direct injection of Cas9/ gRNA. However, the information about its specificity in this organism is very limited and needs further evaluation. In addition, it is conceivable that a Cas9 mRNA optimized for zebrafish codon preference could enhance its activity.展开更多
High-density lipoproteins(HDL) are naturally-occurring nanoparticles that are biocompatible,non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and tra...High-density lipoproteins(HDL) are naturally-occurring nanoparticles that are biocompatible,non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and micro RNA from donor cells to recipient cells.Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins(rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative,promising avenue for efficient targeting transport of nanomedicine.展开更多
基金partially supported by the National Natural Science Foundation of China (No. 31110103904)the National Program on Key Basic Research Project (973 Program) of the Ministry of Science and Technology of China (Nos. 2011CBA01000 and 2012CB945101)
文摘Targeted genome modifications with the Cas9/gRNA system derived from the clustered regularly interspaced short palin- dromic repeat/CRISPR-associated (CRISPR/Cas) system have been successfully used in cultured human cells as well as in most model organisms, including zebrafish (Danio rerio), mouse, and fruit fly (Chang et al., 2013; Cong et al., 2013; Gratz et al., 2013; Hwang et al., 2013; Jao et al., 2013; Shen et al., 2013; Wei et al., 2013). Its application in zebrafish is particu- larly attractive due to the ease of handling this organism and the simple application of this method by direct injection of Cas9/ gRNA. However, the information about its specificity in this organism is very limited and needs further evaluation. In addition, it is conceivable that a Cas9 mRNA optimized for zebrafish codon preference could enhance its activity.
基金supported by National Natural Science Foundation of China (Nos. 81373351, 81573382, and 81722043)grant from Shanghai Science and Technology Committee (15540723700)"Shu Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (15SG14)
文摘High-density lipoproteins(HDL) are naturally-occurring nanoparticles that are biocompatible,non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and micro RNA from donor cells to recipient cells.Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins(rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative,promising avenue for efficient targeting transport of nanomedicine.