路面裂缝检测是用以判断道路安全与否的关键技术,由于裂缝的背景复杂多样,传统的裂缝检测算法难以准确检测裂缝。提出了一种增强语义信息与多通道特征融合的裂缝自动检测算法。网络整体为编码器-解码器结构,在编码器部分引入扩张卷积模...路面裂缝检测是用以判断道路安全与否的关键技术,由于裂缝的背景复杂多样,传统的裂缝检测算法难以准确检测裂缝。提出了一种增强语义信息与多通道特征融合的裂缝自动检测算法。网络整体为编码器-解码器结构,在编码器部分引入扩张卷积模块,扩大特征图有效感受野,整合图像上下文信息,增强特征语义表达能力,提高像素分类精度。在解码器部分搭建了一个基于注意力机制的多通道特征融合模块,利用高层全局注意力信息指导高层语义特征与低层细节特征的逐级融合,有利于恢复图像细节信息,进一步提升对裂缝的像素级检测精度。实验结果表明,在CRACK500公开数据集上训练的模型在测试集上取得72.5%的平均交并比(Intersection over Union,IoU)和96.8%的F1score,该模型直接用于CrackForest数据集测试,平均IoU和F1score分别提升2.0个百分点和1.1个百分点,表明模型具有很好的泛化性能,可用于复杂道路场景下的裂缝检测与质量评估。展开更多
针对现有人体图像前景目标姿态变化、大小差异过大和边缘细节丢失等因素造成分割效果不佳的问题,提出了一种基于可变形有效感受野的人体前景分割算法。该算法将不同尺度的特征图进行融合,减少下采样过程中丢失的空间语义信息;同时结合...针对现有人体图像前景目标姿态变化、大小差异过大和边缘细节丢失等因素造成分割效果不佳的问题,提出了一种基于可变形有效感受野的人体前景分割算法。该算法将不同尺度的特征图进行融合,减少下采样过程中丢失的空间语义信息;同时结合可变有效感受野模块和边缘细化模块来捕获空间信息和语义信息,以适应算法对不同目标的有效感受野范围,并使有效感受野随目标姿态、大小等形态变化进行扩张;最后采用Focal loss缓解正负样本不均衡的问题。实验结果表明,在Baidu People Segmentation人体分割数据集上,对比其他主流语义分割算法,该算法交并比高达88.45%,相比于主流语义分割算法DeepLabV3+高1.07%,相比于经典算法U-net高3.71%,且运行速度快,稳定性好,具有较高的时效性和良好的鲁棒性。展开更多
文摘路面裂缝检测是用以判断道路安全与否的关键技术,由于裂缝的背景复杂多样,传统的裂缝检测算法难以准确检测裂缝。提出了一种增强语义信息与多通道特征融合的裂缝自动检测算法。网络整体为编码器-解码器结构,在编码器部分引入扩张卷积模块,扩大特征图有效感受野,整合图像上下文信息,增强特征语义表达能力,提高像素分类精度。在解码器部分搭建了一个基于注意力机制的多通道特征融合模块,利用高层全局注意力信息指导高层语义特征与低层细节特征的逐级融合,有利于恢复图像细节信息,进一步提升对裂缝的像素级检测精度。实验结果表明,在CRACK500公开数据集上训练的模型在测试集上取得72.5%的平均交并比(Intersection over Union,IoU)和96.8%的F1score,该模型直接用于CrackForest数据集测试,平均IoU和F1score分别提升2.0个百分点和1.1个百分点,表明模型具有很好的泛化性能,可用于复杂道路场景下的裂缝检测与质量评估。
文摘针对现有人体图像前景目标姿态变化、大小差异过大和边缘细节丢失等因素造成分割效果不佳的问题,提出了一种基于可变形有效感受野的人体前景分割算法。该算法将不同尺度的特征图进行融合,减少下采样过程中丢失的空间语义信息;同时结合可变有效感受野模块和边缘细化模块来捕获空间信息和语义信息,以适应算法对不同目标的有效感受野范围,并使有效感受野随目标姿态、大小等形态变化进行扩张;最后采用Focal loss缓解正负样本不均衡的问题。实验结果表明,在Baidu People Segmentation人体分割数据集上,对比其他主流语义分割算法,该算法交并比高达88.45%,相比于主流语义分割算法DeepLabV3+高1.07%,相比于经典算法U-net高3.71%,且运行速度快,稳定性好,具有较高的时效性和良好的鲁棒性。