期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
增强语义信息与多通道特征融合的裂缝检测 被引量:13
1
作者 顾书豪 李小霞 +2 位作者 王学渊 张颖 陈菁菁 《计算机工程与应用》 CSCD 北大核心 2021年第10期204-210,共7页
路面裂缝检测是用以判断道路安全与否的关键技术,由于裂缝的背景复杂多样,传统的裂缝检测算法难以准确检测裂缝。提出了一种增强语义信息与多通道特征融合的裂缝自动检测算法。网络整体为编码器-解码器结构,在编码器部分引入扩张卷积模... 路面裂缝检测是用以判断道路安全与否的关键技术,由于裂缝的背景复杂多样,传统的裂缝检测算法难以准确检测裂缝。提出了一种增强语义信息与多通道特征融合的裂缝自动检测算法。网络整体为编码器-解码器结构,在编码器部分引入扩张卷积模块,扩大特征图有效感受野,整合图像上下文信息,增强特征语义表达能力,提高像素分类精度。在解码器部分搭建了一个基于注意力机制的多通道特征融合模块,利用高层全局注意力信息指导高层语义特征与低层细节特征的逐级融合,有利于恢复图像细节信息,进一步提升对裂缝的像素级检测精度。实验结果表明,在CRACK500公开数据集上训练的模型在测试集上取得72.5%的平均交并比(Intersection over Union,IoU)和96.8%的F1score,该模型直接用于CrackForest数据集测试,平均IoU和F1score分别提升2.0个百分点和1.1个百分点,表明模型具有很好的泛化性能,可用于复杂道路场景下的裂缝检测与质量评估。 展开更多
关键词 裂缝检测 扩张卷积 有效感受野 注意力机制 特征融合
下载PDF
一种改进的轻量人头检测方法 被引量:6
2
作者 高玮军 师阳 +1 位作者 杨杰 张春霞 《计算机工程与应用》 CSCD 北大核心 2021年第1期207-212,共6页
为了提高视频监控中人数统计的精度和速度,解决传统人体检测由于衣物身体阻挡而造成的高遮挡问题。提出一种改进的轻量人头检测方法MKYOLOv3-tiny。该方法是对YOLOv3-tiny进行改进,针对低层的人头特征进行多尺度融合,实现不同卷积层的... 为了提高视频监控中人数统计的精度和速度,解决传统人体检测由于衣物身体阻挡而造成的高遮挡问题。提出一种改进的轻量人头检测方法MKYOLOv3-tiny。该方法是对YOLOv3-tiny进行改进,针对低层的人头特征进行多尺度融合,实现不同卷积层的分类预测与位置回归,提升检测的精度;针对人头较小的特点,结合有效感受野的思想,K-means聚类减小初始候选框的规格,提升候选框的精度。实验结果表明,改进后的模型在Brainwash密集人头检测数据集上与原方法相比,在精度上提升了3.21%,漏检率降低了8.7%。 展开更多
关键词 人头检测 多尺度融合 K-MEANS 有效感受野 密集人数统计
下载PDF
目标检测强化上下文模型 被引量:5
3
作者 郑晨斌 张勇 +2 位作者 胡杭 吴颖睿 黄广靖 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期529-539,共11页
强化上下文模型中的强化上下文模块(ECM)利用双空洞卷积结构,在节省参数量的同时,通过扩大有效感受野来强化浅层上下文信息,并在较少破坏原始SSD网络的基础上灵活作用于网络中浅预测层,形成强化上下文模型网络(ECMNet).当输入图像大小为... 强化上下文模型中的强化上下文模块(ECM)利用双空洞卷积结构,在节省参数量的同时,通过扩大有效感受野来强化浅层上下文信息,并在较少破坏原始SSD网络的基础上灵活作用于网络中浅预测层,形成强化上下文模型网络(ECMNet).当输入图像大小为300×300时,在PASCAL VOC2007测试集上,ECMNet获得的均值平均精度为80.52%,在1080Ti上的速度为73.5帧/s.实验结果表明,ECMNet能有效强化上下文信息,并在参数量、速度和精度上达到较优权衡,优于许多先进的目标检测器. 展开更多
关键词 目标检测 上下文信息 有效感受野 强化上下文模块(ECM) 一阶段目标检测器
下载PDF
基于有效感受野的区域推荐网络 被引量:3
4
作者 张绳昱 董士风 +2 位作者 焦林 王琦进 王红强 《模式识别与人工智能》 EI CSCD 北大核心 2020年第5期393-400,共8页
基于卷积神经网络的目标检测方法通过优化区域推荐达到较高的检测精度.由此,文中提出基于有效感受野的区域推荐网络.在区域推荐网络上引入基于有效感受野的样本匹配方法,强化基于交叠比的样本匹配规则,增强特征信息在区域推荐生成时的... 基于卷积神经网络的目标检测方法通过优化区域推荐达到较高的检测精度.由此,文中提出基于有效感受野的区域推荐网络.在区域推荐网络上引入基于有效感受野的样本匹配方法,强化基于交叠比的样本匹配规则,增强特征信息在区域推荐生成时的表征能力,减少锚定框和区域推荐数目,简化锚定框参数设置.结合快速区域的卷积神经网络检测器后,在Pascal VOC数据集上的检测精度有所提升,这表明文中方法是有效的. 展开更多
关键词 深度卷积网络 目标检测 区域推荐 有效感受野 区域推荐网络(RPN)
下载PDF
基于卷积特征建模的目标检测方法 被引量:2
5
作者 潘秋羽 王伟 +1 位作者 王明明 王道顺 《计算机应用研究》 CSCD 北大核心 2021年第3期928-931,共4页
现有依赖CNN的目标检测算法常采用特征融合的建模方式来丰富特征表达,虽然该方法一定程度上能有效改善多尺度目标检测,但是在针对复杂场景进行检测时却没有显著的提升。这主要受限于三个问题的影响:长路径特征融合造成的特征间相关性损... 现有依赖CNN的目标检测算法常采用特征融合的建模方式来丰富特征表达,虽然该方法一定程度上能有效改善多尺度目标检测,但是在针对复杂场景进行检测时却没有显著的提升。这主要受限于三个问题的影响:长路径特征融合造成的特征间相关性损失;仅设计了单方向的融合连接,忽略了反方向的语义信息弥补;忽略了有效感受野(effective receptive field,ERF)在多尺度检测中的重要性。针对这三点分别设计了二次融合结构(double fusion structure,DFS)、多分支融合模块(multi branch fusion module,MBFM)和感受野增强模块(receptive field enhance module,RFEM)。该方法利用DFS缩短特征层级间的相对路径,然后通过MBFM来同时弥补上层和下层的语义信息缺失,并使用RFEM建模特征通道,增大ERF区域。最终模型在PASCAL VOC 2007测试数据集上达到了85.4%的平均精度均值(mean average precision,mAP),与依赖传统建模方式的检测算法相比,提出的方法提高了2.6%。 展开更多
关键词 目标检测 特征相关性 多分支融合 有效感受野 卷积神经网络
下载PDF
基于改进SSD的多尺度低空无人机检测 被引量:2
6
作者 刘朋飞 周海 +1 位作者 冯水春 卞春江 《计算机工程与设计》 北大核心 2021年第11期3277-3285,共9页
鉴于低空场景下无人机尺度多变、背景复杂的特点,提出一种基于深度学习的多尺度低空无人机目标检测算法。针对高层卷积特征对小无人机目标特征表达能力差的问题,引入VGG16低层特征图Conv3_3,构建特征金字塔网络,利用有效感受野技术,重... 鉴于低空场景下无人机尺度多变、背景复杂的特点,提出一种基于深度学习的多尺度低空无人机目标检测算法。针对高层卷积特征对小无人机目标特征表达能力差的问题,引入VGG16低层特征图Conv3_3,构建特征金字塔网络,利用有效感受野技术,重新设计各特征图中先验框的尺寸和长宽比例,建立多尺度、多背景且包含干扰目标的低空无人机图像数据集,完成算法的训练和优化。实验结果表明,该算法相比原始SSD网络,平均精度(average precision,AP)提高了7.32%,有较好的抗干扰效果和实时检测能力。 展开更多
关键词 无人机目标检测 深度学习 特征融合 有效感受野 小目标检测
下载PDF
可变形有效感受野的人体图像语义分割算法 被引量:1
7
作者 张彬彬 帕孜来·马合木提 《光电子.激光》 CAS CSCD 北大核心 2021年第9期953-961,共9页
针对现有人体图像前景目标姿态变化、大小差异过大和边缘细节丢失等因素造成分割效果不佳的问题,提出了一种基于可变形有效感受野的人体前景分割算法。该算法将不同尺度的特征图进行融合,减少下采样过程中丢失的空间语义信息;同时结合... 针对现有人体图像前景目标姿态变化、大小差异过大和边缘细节丢失等因素造成分割效果不佳的问题,提出了一种基于可变形有效感受野的人体前景分割算法。该算法将不同尺度的特征图进行融合,减少下采样过程中丢失的空间语义信息;同时结合可变有效感受野模块和边缘细化模块来捕获空间信息和语义信息,以适应算法对不同目标的有效感受野范围,并使有效感受野随目标姿态、大小等形态变化进行扩张;最后采用Focal loss缓解正负样本不均衡的问题。实验结果表明,在Baidu People Segmentation人体分割数据集上,对比其他主流语义分割算法,该算法交并比高达88.45%,相比于主流语义分割算法DeepLabV3+高1.07%,相比于经典算法U-net高3.71%,且运行速度快,稳定性好,具有较高的时效性和良好的鲁棒性。 展开更多
关键词 人体图像 语义分割 可变形 有效感受野 边缘细化 Focal loss
原文传递
基于有效感受野和注意力融合机制的脑肿瘤全自动分割
8
作者 邹祥 王瑜 +1 位作者 肖洪兵 杨迪 《中国医学物理学杂志》 CSCD 2024年第5期563-570,共8页
深度学习在医学图像分割领域取得了显著成果,但其在脑肿瘤分割任务中,仍面临感受野不足、冗余信息过多、信息丢失等问题;为此,本研究提出一种基于编-解码结构的脑肿瘤分割网络模型(EAU-Net)。EAU-Net采用有效感受野拓展模块和注意力融... 深度学习在医学图像分割领域取得了显著成果,但其在脑肿瘤分割任务中,仍面临感受野不足、冗余信息过多、信息丢失等问题;为此,本研究提出一种基于编-解码结构的脑肿瘤分割网络模型(EAU-Net)。EAU-Net采用有效感受野拓展模块和注意力融合模块改善脑肿瘤分割网络感受野不足与冗余信息过多带来的不利影响;同时,引入基于倒残差结构的瓶颈重采样模块,有效避免上下采样时造成的信息损失,并采用深度卷积降低网络的计算量。在BraTS2020数据集上的实验结果表明,EAU-Net获得最优的分割精度,验证了其在脑肿瘤分割任务中的可行性和有效性。 展开更多
关键词 脑肿瘤分割 EAU-Net 有效感受野拓展模块 注意力融合模块 倒残差结构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部