An analysis of a 68-year monthly hindcast output from an eddy-resolving ocean general circulation model reveals the relationship between the interannual variability of the Kerama Gap transport(KGT)and the Kuroshio/Ryu...An analysis of a 68-year monthly hindcast output from an eddy-resolving ocean general circulation model reveals the relationship between the interannual variability of the Kerama Gap transport(KGT)and the Kuroshio/Ryukyu Current system.The study found a significant difference in the interannual variability of the upstream and downstream transports of the East China Sea-(ECS-)Kuroshio and the Ryukyu Current.The interannual variability of the KGT was found to be of paramount importance in causing the differences between the upstream and downstream ECS-Kuroshio.Additionally,it contributed approximately 37%to the variability of the Ryukyu Current.The interannual variability of the KGT was well described by a two-layer rotating hydraulic theory.It was dominated by its subsurface-intensified flow core,and the upper layer transport made a weaker negative contribution to the total KGT.The subsurface flow core was found to be mainly driven by the subsurface pressure head across the Kerama Gap,and the pressure head was further dominated by the subsurface density anomalies on the Pacific side.These density anomalies could be traced back to the eastern open ocean,and their propagation speed was estimated to be about 7.4 km/d,which is consistent with the speed of the local first-order baroclinic Rossby wave.When the negative(positive)density anomaly signal reached the southern region of the Kerama Gap,it triggered the increase(decrease)of the KGT towards the Pacific side and the formation of an anticyclonic(cyclonic)vortex by baroclinic adjustment.Meanwhile,there is an increase(decrease)in the upstream transport of the entire Kuroshio/Ryukyu Current system and an offshore flow that decreases(increases)the downstream Ryukyu Current.展开更多
Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(inte...Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(interrill areas).The aim of this study was to use Rare Earth Oxide(REO)tracers and Structure-from-Motion(SfM)photogrammetry to elucidate retrospective information about soil erosion rates and sediment sources during different soil erosion conditions,within a controlled laboratory environment.The experimental conditions created erosion events consistent with diffuse and convergent erosion processes.REO tracers allowed the sediment transport distances of over 2 m to be described,and helped resolved the relative contribution of diffuse and convergent soil erosion;interrill areas were also iden-tified as a significant sediment sources soil loss under convergent erosion conditions.While the potential for SfM photogrammetry to resolve sub-millimetre elevations changes was demonstrated,under some conditions non-erosional changes in surface elevation,such as compaction,exceeded volumes of soil loss via diffuse erosion.The discrepancies between SfM Photogrammetry calculations and REO tagged sediment export were beneficial,identifying that during soil erosion events sediment in both aggregate and particle form is deposited within the convergent features,even when the rill extended the full length of the soil surface.The combination of SfM photogrammetry and REO tracers has provided a novel platform for building a spatial understanding of patterns of soil loss and source apportionment between rill and interrill erosion.展开更多
基金The Fundamental Research Funds for the Central Universities under contract No.B220201024.
文摘An analysis of a 68-year monthly hindcast output from an eddy-resolving ocean general circulation model reveals the relationship between the interannual variability of the Kerama Gap transport(KGT)and the Kuroshio/Ryukyu Current system.The study found a significant difference in the interannual variability of the upstream and downstream transports of the East China Sea-(ECS-)Kuroshio and the Ryukyu Current.The interannual variability of the KGT was found to be of paramount importance in causing the differences between the upstream and downstream ECS-Kuroshio.Additionally,it contributed approximately 37%to the variability of the Ryukyu Current.The interannual variability of the KGT was well described by a two-layer rotating hydraulic theory.It was dominated by its subsurface-intensified flow core,and the upper layer transport made a weaker negative contribution to the total KGT.The subsurface flow core was found to be mainly driven by the subsurface pressure head across the Kerama Gap,and the pressure head was further dominated by the subsurface density anomalies on the Pacific side.These density anomalies could be traced back to the eastern open ocean,and their propagation speed was estimated to be about 7.4 km/d,which is consistent with the speed of the local first-order baroclinic Rossby wave.When the negative(positive)density anomaly signal reached the southern region of the Kerama Gap,it triggered the increase(decrease)of the KGT towards the Pacific side and the formation of an anticyclonic(cyclonic)vortex by baroclinic adjustment.Meanwhile,there is an increase(decrease)in the upstream transport of the entire Kuroshio/Ryukyu Current system and an offshore flow that decreases(increases)the downstream Ryukyu Current.
文摘Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(interrill areas).The aim of this study was to use Rare Earth Oxide(REO)tracers and Structure-from-Motion(SfM)photogrammetry to elucidate retrospective information about soil erosion rates and sediment sources during different soil erosion conditions,within a controlled laboratory environment.The experimental conditions created erosion events consistent with diffuse and convergent erosion processes.REO tracers allowed the sediment transport distances of over 2 m to be described,and helped resolved the relative contribution of diffuse and convergent soil erosion;interrill areas were also iden-tified as a significant sediment sources soil loss under convergent erosion conditions.While the potential for SfM photogrammetry to resolve sub-millimetre elevations changes was demonstrated,under some conditions non-erosional changes in surface elevation,such as compaction,exceeded volumes of soil loss via diffuse erosion.The discrepancies between SfM Photogrammetry calculations and REO tagged sediment export were beneficial,identifying that during soil erosion events sediment in both aggregate and particle form is deposited within the convergent features,even when the rill extended the full length of the soil surface.The combination of SfM photogrammetry and REO tracers has provided a novel platform for building a spatial understanding of patterns of soil loss and source apportionment between rill and interrill erosion.