Eariy-arrival waveform tomography (EWT) is one of the most promising techniques for building near-surface velocity model. Based on finite-frequency wave equation, EWT estimates velocities by matching calculated earl...Eariy-arrival waveform tomography (EWT) is one of the most promising techniques for building near-surface velocity model. Based on finite-frequency wave equation, EWT estimates velocities by matching calculated early-arrival waveforms with the observed ones. However, the objective function of EWT can easily converge to local minimum because of the cycle-skipping phenomenon. In order to reduce the cycle-skipping problem, a hybrid-domain early-arrival waveform tomography (HEWT) is proposed in this paper. The forward modeling of HEWT is realized in the time domain where early-arrival waveforms are easier to be selected from seismic data and less memory is needed than they are in the frequency domain. The inversion is implemented in the frequency domain where multi-scale strategy is more convenient to be realized than that in the time domain. Discrete Fourier transformation (DFT) is used to transform the time-domain wavefield to the frequency-domain wavefield. Test results show that HEWT is more competitive than EWT in both accuracy and computational time.展开更多
A discrete-time GI/G/1 retrial queue with Bernoulli retrials and time-controlled vacation policies is investigated in this paper. By representing the inter-arrival, service and vacation tlmes using a Markov-based appr...A discrete-time GI/G/1 retrial queue with Bernoulli retrials and time-controlled vacation policies is investigated in this paper. By representing the inter-arrival, service and vacation tlmes using a Markov-based approach, we are able to analyze this model as a level-dependent quasi-birth-and-death (LDQBD) process which makes the model algorithmically tractable. Several performance measures such as the stationary probability distribution and the expected number of customers in the orbit have been discussed with two different policies: deterministic time-controlled system and random time-controlled system. To give a comparison with the known vacation policy in the literature, we present the exhaustive vacation policy as a contrast between these policies under the early arrival system (EAS) and the late arrival system with delayed access (LAS-DA). Significant difference between EAS and LAS-DA is illustrated by some numerical examples.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41230138, 41074077)
文摘Eariy-arrival waveform tomography (EWT) is one of the most promising techniques for building near-surface velocity model. Based on finite-frequency wave equation, EWT estimates velocities by matching calculated early-arrival waveforms with the observed ones. However, the objective function of EWT can easily converge to local minimum because of the cycle-skipping phenomenon. In order to reduce the cycle-skipping problem, a hybrid-domain early-arrival waveform tomography (HEWT) is proposed in this paper. The forward modeling of HEWT is realized in the time domain where early-arrival waveforms are easier to be selected from seismic data and less memory is needed than they are in the frequency domain. The inversion is implemented in the frequency domain where multi-scale strategy is more convenient to be realized than that in the time domain. Discrete Fourier transformation (DFT) is used to transform the time-domain wavefield to the frequency-domain wavefield. Test results show that HEWT is more competitive than EWT in both accuracy and computational time.
基金supported by the National Natural Science Foundation of China(Grant Nos.10871020 and 11171019)Program for New Century Excellent Talents in University(No.NCET-11-0568)the Fundamental Research Funds for the Central Universities(Nos.2011JBZ012 and 2013JBZ019)
文摘A discrete-time GI/G/1 retrial queue with Bernoulli retrials and time-controlled vacation policies is investigated in this paper. By representing the inter-arrival, service and vacation tlmes using a Markov-based approach, we are able to analyze this model as a level-dependent quasi-birth-and-death (LDQBD) process which makes the model algorithmically tractable. Several performance measures such as the stationary probability distribution and the expected number of customers in the orbit have been discussed with two different policies: deterministic time-controlled system and random time-controlled system. To give a comparison with the known vacation policy in the literature, we present the exhaustive vacation policy as a contrast between these policies under the early arrival system (EAS) and the late arrival system with delayed access (LAS-DA). Significant difference between EAS and LAS-DA is illustrated by some numerical examples.