Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic mode...Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach.展开更多
本文基于AREM(Advanced Regional Eta Model)模式,结合中国气象局成都高原气象研究所西南低涡加密观测科学试验得到的探空观测第一手资料,通过对2012年7月3~4日四川区域性暴雨天气过程(20120703过程)进行数值模拟分析,结果表明...本文基于AREM(Advanced Regional Eta Model)模式,结合中国气象局成都高原气象研究所西南低涡加密观测科学试验得到的探空观测第一手资料,通过对2012年7月3~4日四川区域性暴雨天气过程(20120703过程)进行数值模拟分析,结果表明:(1)降水雨带的分布主要取决于西南低涡移动路径,不同初值会使得低涡路径在磨合协调期产生强摆动,稳定后则在此基础上,随着环境流场继续移动发展。(2)引入4个加密探空站点资料会对整个大气物理量场造成一定影响,最大差值分布在这些站点附近,热力和动力物理量场最大偏差中心并不重合。时间演变直观地说明了初值对局地大气状态的影响时段有限,主要集中在前期,与模式自身调整期相重叠。(3)初始的大气状态必然会随着模式的磨合过程进行调整,不同初值在调整期能对中小尺度低涡系统的位置及强度产生影响,形成各自稳定的低涡系统初态。(4)低涡中心所对应的散度、涡度、垂直速度关系非常密切,但三者强度和发展高度的演变并非完全一致。展开更多
Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information...Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information for assessment of regional crop(summer maize and winter wheat) actual evapotranspiration(ET a) in Huang-Huai-Hai(3H) Plain, China. The average seasonal ET a of summer maize and winter wheat were 354.8 and 521.5 mm respectively in 3H Plain. A high-ET a belt of summer maize occurs in piedmont plain, while a low ET a area was found in the hill-irrigable land and dry land area. For winter wheat, a high-ET a area was located in the middle part of 3H Plain, including low plain-hydropenia irrigable land and dry land, hill-irrigable land and dry land, and basin-irrigable land and dry land. Spatial analysis demonstrated a linear relationship between crop ET a, normalized difference vegetation index(NDVI), and the land surface temperature(LST). A stronger relationship between ET a and NDVI was found in the metaphase and last phase than other crop growing phase, as indicated by higher correlation coefficient values. Additionally, higher correlation coefficients were detected between ET a and LST than that between ET a and NDVI, and this significant relationship ran through the entire crop growing season. ET a in the summer maize growing season showed a significant relationship with longitude, while ET a in the winter wheat growing season showed a significant relationship with latitude. The results of this study will serve as baseline information for water resources management of 3H Plain.展开更多
基金supported by the Natural Science Foundation of China (Grant no.60604009)Aeronautical Science Foundation of China (Grant no.2006ZC51039,Beijing NOVA Program Foundation of China (Grant no.2007A017)+1 种基金Open Fund of the Provincial Key Laboratory for Information Processing Technology,Suzhou University (Grant no KJS0821)"New Scientific Star in Blue Sky"Talent Program of Beihang University of China
文摘Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach.
文摘本文基于AREM(Advanced Regional Eta Model)模式,结合中国气象局成都高原气象研究所西南低涡加密观测科学试验得到的探空观测第一手资料,通过对2012年7月3~4日四川区域性暴雨天气过程(20120703过程)进行数值模拟分析,结果表明:(1)降水雨带的分布主要取决于西南低涡移动路径,不同初值会使得低涡路径在磨合协调期产生强摆动,稳定后则在此基础上,随着环境流场继续移动发展。(2)引入4个加密探空站点资料会对整个大气物理量场造成一定影响,最大差值分布在这些站点附近,热力和动力物理量场最大偏差中心并不重合。时间演变直观地说明了初值对局地大气状态的影响时段有限,主要集中在前期,与模式自身调整期相重叠。(3)初始的大气状态必然会随着模式的磨合过程进行调整,不同初值在调整期能对中小尺度低涡系统的位置及强度产生影响,形成各自稳定的低涡系统初态。(4)低涡中心所对应的散度、涡度、垂直速度关系非常密切,但三者强度和发展高度的演变并非完全一致。
基金supported by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD09B01)the National Basic Research Program of China (973 Program, 2012CB955904)the National Science Foundation for Young Scientists of China (41401510)
文摘Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information for assessment of regional crop(summer maize and winter wheat) actual evapotranspiration(ET a) in Huang-Huai-Hai(3H) Plain, China. The average seasonal ET a of summer maize and winter wheat were 354.8 and 521.5 mm respectively in 3H Plain. A high-ET a belt of summer maize occurs in piedmont plain, while a low ET a area was found in the hill-irrigable land and dry land area. For winter wheat, a high-ET a area was located in the middle part of 3H Plain, including low plain-hydropenia irrigable land and dry land, hill-irrigable land and dry land, and basin-irrigable land and dry land. Spatial analysis demonstrated a linear relationship between crop ET a, normalized difference vegetation index(NDVI), and the land surface temperature(LST). A stronger relationship between ET a and NDVI was found in the metaphase and last phase than other crop growing phase, as indicated by higher correlation coefficient values. Additionally, higher correlation coefficients were detected between ET a and LST than that between ET a and NDVI, and this significant relationship ran through the entire crop growing season. ET a in the summer maize growing season showed a significant relationship with longitude, while ET a in the winter wheat growing season showed a significant relationship with latitude. The results of this study will serve as baseline information for water resources management of 3H Plain.