BACKGROUND Xanthomatosis,a metabolic disorder causing yellow growths(xanthomas),poses challenges in lipid metabolism.This case study introduces the first documented instance within China's Yi population,emphasizin...BACKGROUND Xanthomatosis,a metabolic disorder causing yellow growths(xanthomas),poses challenges in lipid metabolism.This case study introduces the first documented instance within China's Yi population,emphasizing the need to explore dietary habits and treatment strategies tailored to this specific community.CASE SUMMARY Xanthomatosis is a metabolic disorder where lipid metabolism goes awry,resulting in the development of yellowish growths called xanthomas.A male patient,47 years of age,from China's Yi population,who is obese,visited our dermatology clinic complaining of widespread,non-painful rashes that have been present for two weeks.The patient works as a chef and has a diet that frequently includes oily and greasy foods.This case represents the initial documentation of xanthomatosis within the Yi population in China,offering a theoretical foundation for understanding dietary patterns and treatment options specific to the Yi community.CONCLUSION The first report of xanthomatosis in the Yi population in China lays a theoretical foundation for understanding Yi dietary patterns and treatment.展开更多
A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies ar...A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies are dominated by base surge deposits of explosive facies.As the architecture model of volcanic facies is still uncertain,it has restricted the exploration and development of mineral resources in this area.Using core and cuttings data,the lithology,lithofacies,geochemistry as well as grain size characteristics of volcanic rocks were analyzed.Based on these analyses,the volcanic rocks in the well section are divided into three eruptive stages.The transport direction of each volcanic eruption is analyzed using crystal fragment size analysis.The facies architecture of the block-T units was established based on the reconstruction results of paleo-geomorphology.The results show that the drilling reveals proximal facies(PF)and distal facies(DF)of the volcanic edifices.However,the crater-near crater facies(CNCF)are not revealed.Compared with the reservoirs of the Songliao Basin,it is shown that the volcanic rocks in the Xihu Sag have good exploration potential;a favorable target area is the CNCF near the contemporaneous fault.展开更多
The basin filling geometric pattern of volcanic eruptive rocks depends on both of the eruptive locations in a basin and structural styles of fault terraces. It is divided into three types by eruptive locations and occ...The basin filling geometric pattern of volcanic eruptive rocks depends on both of the eruptive locations in a basin and structural styles of fault terraces. It is divided into three types by eruptive locations and occurrences of eruptive rocks, including the pattern of eruption along fault and occurrence (PEAFO), the pattern of eruption on footwall of a fault and occurrence (PEOFO) and the pattern of eruption on hangingwall of fault and occurrence (PEOHO) in Xujiaweizi fault depression of Songliao basin, Northeast of China. Those basin filling patterns of volcanic eruptive rocks are of specific geometric characteristics controlling or affecting sedimentation, geometry of sedimentary body and sequence architecture during a sequence evolution. The study shows that the volcanic rocks developed at different stages of lowstand, transgressive and highstand can give different controls or affects on the sequence architecture.展开更多
Fifty-five suprathermal particle events were selected from WIND observations between 1995 and 1999. Based on systematic analysis on the observational characteristics of these events a two-parameter (the rising time an...Fifty-five suprathermal particle events were selected from WIND observations between 1995 and 1999. Based on systematic analysis on the observational characteristics of these events a two-parameter (the rising time and the flux ratio of electrons to protons in each event) classification method was proposed to classify these events. The three clas-sified classes are (1) impulsive electron events with the flux ratio of electrons to protons being bigger than 1 and rising time being shorter than 200 min, (2) impulsive proton events with the flux ratio being smaller than 1 and rising time being shorter than 200 min, and (3) gradual proton events with the flux ratio being smaller than 1 and the rising time being longer than 200 min. In the past, "impulsive solar electron events" were under in-tense research. However, because the selection standards of their velocity dispersions or pitch-angle distributions were inadequate, statistical surveys of selected events were dif-ferent from each other and even some conclusions were not consistent with the theory, for example, the relation of type-III solar radio bursts to the "impulsive solar electron events". The first class of impulsive electron events are associated with type-III radio bursts and with clear velocity dispersions; therefore they ought to originate from the Sun. The second class of the events, which have short continuance time and usually are not associated with type-III radio bursts and without velocity dispersion, are still far away from inter-planetary shocks and most of them do not one-to-one correspond to corrotating interact-ing regions (CIRs); such events are possible results of local interplanetary magnetic field reconnection or electromagnetic disturbances. Finally, about 2/3 gradual proton events of the third class occur with interplanetary shocks, the delay times of which are almost equal to the rising time. Some of these events can be understood as particle accelerations by shocks.展开更多
As the second common type of volcanic vent on Earth, maar-diatreme volcanoes and their post-eruptive lacustrine sediments are a main focus of volcanology, palaeolimnology, palaeoclimatology and palaeontology. A number...As the second common type of volcanic vent on Earth, maar-diatreme volcanoes and their post-eruptive lacustrine sediments are a main focus of volcanology, palaeolimnology, palaeoclimatology and palaeontology. A number of maar-type volcanoes have been found in Leizhou Peninsula, South China, but little is known about their eruption processes and detailed stratigraphy of the post-eruptive sediments. We present a combined geophysical and geological analysis to study the eruptive history and post-eruptive sediment stratigraphy of a large maar, the elliptical(1.8 × 3.0 km^(2)) Jiudouyang(JDY) maar. The lacustrine stratigraphy revealed by drilling cores shows that the JDY maar lake has three major stages of evolution:(i) deep-lake sedimentary environment characterized by high autochthonous diatom productivity;(ii) shallow lake to swamp with very low water levels, characterized by a high total organic carbon(TOC) and abundant wood fragments;and,(iii) intermittent shallow lake and alluvial deposits composed of clay minerals and sand. The electrical resistivity tomography(ERT) values and lithological features are highly consistent, which clearly reveal the presence of ca. 50 m thick lacustrine sediments, directly underlain by a ca. 70 m thick basaltic lava rather than diatreme breccia in the crater. This infill sequence implies an alternation of eruption style from phreatomagmatic to Strombolian and/or lava flow, due to high magma flux and ascent rate of the Hainan Plume during the middle Pleistocene. The ERT data also reveal the initial phreatomagmatic crater floor at ca. 120 m depth. The initial crater had a large diameter/depth ratio(ca. 17), with an elongated shape(major axis to minor axis = 0.6), implying possible lateral vent migration during the eruption. A significant erosion under tropical weathering condition during the last few hundred thousand years, accounted for the large size of the maar crater. The study provides insights into the eruptive history and post-eruptive evolution of a large maar, as well as th展开更多
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material throu...Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.展开更多
A 2D velocity field of the eruptive prominence (EP) of 1991 March 5 is obtained from its spectral data observed at the Yunnan Observatory and the velocity distributions along the entrance slit are derived for differ...A 2D velocity field of the eruptive prominence (EP) of 1991 March 5 is obtained from its spectral data observed at the Yunnan Observatory and the velocity distributions along the entrance slit are derived for different observing frames. Under the assumption that matter in the EP undergoes axial, radial and possible rotational motions, we construct a theoretical velocity distribution of the EP along the entrance slit, to derive, by fitting, the angular velocity of rotation ω and the other three parameters (axial velocity v0, radial velocity vr and the angle between the EP plane and the line of sight Ф). We found: an averaged angular velocity ω of 3.0 × 10^-3 arc s^-1 and the variation of ω with the height above the solar limb. As the EP rises, the matter within it in fact moves along a spiral path around its axis. The spiral motion may be explained by the theory of plasma ‘double pole diffusion' (DPD) caused by a sharp density gradient between the eruptive prominence and the surrounding corona. A theoretical angular velocity ω′ is estimated based on the DPD and basically coincides with ω obtained from the optimal velocity fitting.展开更多
Diabetes mellitus (DM) is a most common endocrine disorder and it is characterized by high serum glucose levels and by disturbance of lipid metabolism. As a result, the patients can develop long-term systemic compli...Diabetes mellitus (DM) is a most common endocrine disorder and it is characterized by high serum glucose levels and by disturbance of lipid metabolism. As a result, the patients can develop long-term systemic complications. Numerous skin lesions are associated with either type 1 or type 2 diabetes mellitus, and they are specific chronic complications of the disease. Cutaneous xanthomas result from deposition of lipids in the histiocytes in the dermis or subcutaneous tissue. Eruptive xanthomas are a characteristic, but uncommon complication of diabetes mellitus associated with a more sustained hyperlipidemia affecting plasma triglycerides and cholesterol, and hyperglycemia with glycosuria.展开更多
In this paper, a solution of the problem about how a massive star knows that it gets rid of its excess of mass before it can become a white dwarf, a pulsar or a black hole, is proposed. Many astronomers believe that t...In this paper, a solution of the problem about how a massive star knows that it gets rid of its excess of mass before it can become a white dwarf, a pulsar or a black hole, is proposed. Many astronomers believe that this may take place in the form of a nova and supernova outburst, as well as in the form of a continuous outflow of gas [1].展开更多
The Barombi Mbo Maar (BMM), which is the largest maar in Cameroon, possesses about 126 m-thick well-preserved pyroclastic deposits sequence in which two successive paleosoil beds have been identified. The maar was tho...The Barombi Mbo Maar (BMM), which is the largest maar in Cameroon, possesses about 126 m-thick well-preserved pyroclastic deposits sequence in which two successive paleosoil beds have been identified. The maar was thought to have been active a million years ago. However, layers stratigraphically separated by the identified paleosoils have been dated to shed lights on its age and to reconstruct the chronology of its past activity. The results showed that the BMM formed through three eruptive cycles: the first ~0.51 Ma ago, the second at ~0.2 Ma and the third ~0.08 Ma B.P. The ages indicate that the BMM maar-forming eruptions were younger than a million years. The findings also suggested that the maar is polygenetic. At a regional scale, the eruptive events would have occurred during some volcanic manifestations at Mt Manengouba and Mt Cameroon. Therefore, with the decrease in the recurrence time of eruptions from ~0.3 Ma to 0.1 Ma, and given the possible relation between its eruptive events and those of its neighboring polygenetic volcanoes, the BMM is expected to erupt within the next 20 ka.展开更多
文摘BACKGROUND Xanthomatosis,a metabolic disorder causing yellow growths(xanthomas),poses challenges in lipid metabolism.This case study introduces the first documented instance within China's Yi population,emphasizing the need to explore dietary habits and treatment strategies tailored to this specific community.CASE SUMMARY Xanthomatosis is a metabolic disorder where lipid metabolism goes awry,resulting in the development of yellowish growths called xanthomas.A male patient,47 years of age,from China's Yi population,who is obese,visited our dermatology clinic complaining of widespread,non-painful rashes that have been present for two weeks.The patient works as a chef and has a diet that frequently includes oily and greasy foods.This case represents the initial documentation of xanthomatosis within the Yi population in China,offering a theoretical foundation for understanding dietary patterns and treatment options specific to the Yi community.CONCLUSION The first report of xanthomatosis in the Yi population in China lays a theoretical foundation for understanding Yi dietary patterns and treatment.
基金supported by the National Natural Science Foundation of China(41472304)the MOST(2012CB822002)+1 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05026-004-001)the Natural Science Foundation of Jilin Province(20170101001JC)
文摘A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies are dominated by base surge deposits of explosive facies.As the architecture model of volcanic facies is still uncertain,it has restricted the exploration and development of mineral resources in this area.Using core and cuttings data,the lithology,lithofacies,geochemistry as well as grain size characteristics of volcanic rocks were analyzed.Based on these analyses,the volcanic rocks in the well section are divided into three eruptive stages.The transport direction of each volcanic eruption is analyzed using crystal fragment size analysis.The facies architecture of the block-T units was established based on the reconstruction results of paleo-geomorphology.The results show that the drilling reveals proximal facies(PF)and distal facies(DF)of the volcanic edifices.However,the crater-near crater facies(CNCF)are not revealed.Compared with the reservoirs of the Songliao Basin,it is shown that the volcanic rocks in the Xihu Sag have good exploration potential;a favorable target area is the CNCF near the contemporaneous fault.
文摘The basin filling geometric pattern of volcanic eruptive rocks depends on both of the eruptive locations in a basin and structural styles of fault terraces. It is divided into three types by eruptive locations and occurrences of eruptive rocks, including the pattern of eruption along fault and occurrence (PEAFO), the pattern of eruption on footwall of a fault and occurrence (PEOFO) and the pattern of eruption on hangingwall of fault and occurrence (PEOHO) in Xujiaweizi fault depression of Songliao basin, Northeast of China. Those basin filling patterns of volcanic eruptive rocks are of specific geometric characteristics controlling or affecting sedimentation, geometry of sedimentary body and sequence architecture during a sequence evolution. The study shows that the volcanic rocks developed at different stages of lowstand, transgressive and highstand can give different controls or affects on the sequence architecture.
基金the National Natural Science Foundation of China (Grant Nos. 10425312, 40574065 and 10333030)the Major State Basic Research Development Program of China (973 program) (Grant No. 2006CB806302)the Chinese Academy of Sciences (Grant No. KJCX2-YW-T04)
文摘Fifty-five suprathermal particle events were selected from WIND observations between 1995 and 1999. Based on systematic analysis on the observational characteristics of these events a two-parameter (the rising time and the flux ratio of electrons to protons in each event) classification method was proposed to classify these events. The three clas-sified classes are (1) impulsive electron events with the flux ratio of electrons to protons being bigger than 1 and rising time being shorter than 200 min, (2) impulsive proton events with the flux ratio being smaller than 1 and rising time being shorter than 200 min, and (3) gradual proton events with the flux ratio being smaller than 1 and the rising time being longer than 200 min. In the past, "impulsive solar electron events" were under in-tense research. However, because the selection standards of their velocity dispersions or pitch-angle distributions were inadequate, statistical surveys of selected events were dif-ferent from each other and even some conclusions were not consistent with the theory, for example, the relation of type-III solar radio bursts to the "impulsive solar electron events". The first class of impulsive electron events are associated with type-III radio bursts and with clear velocity dispersions; therefore they ought to originate from the Sun. The second class of the events, which have short continuance time and usually are not associated with type-III radio bursts and without velocity dispersion, are still far away from inter-planetary shocks and most of them do not one-to-one correspond to corrotating interact-ing regions (CIRs); such events are possible results of local interplanetary magnetic field reconnection or electromagnetic disturbances. Finally, about 2/3 gradual proton events of the third class occur with interplanetary shocks, the delay times of which are almost equal to the rising time. Some of these events can be understood as particle accelerations by shocks.
基金This work was supported by the National Key R&D Program of China(Grant No.2016 YFA0600500)the National Natural Science Foundation of China(Grant Nos.41472143 and 41661144003)the Guangdong Province Introduction of Innovative R&D Team of Geological Processes and Natural Disasters around the South China Sea(Grant No.2016ZT06N331)。
文摘As the second common type of volcanic vent on Earth, maar-diatreme volcanoes and their post-eruptive lacustrine sediments are a main focus of volcanology, palaeolimnology, palaeoclimatology and palaeontology. A number of maar-type volcanoes have been found in Leizhou Peninsula, South China, but little is known about their eruption processes and detailed stratigraphy of the post-eruptive sediments. We present a combined geophysical and geological analysis to study the eruptive history and post-eruptive sediment stratigraphy of a large maar, the elliptical(1.8 × 3.0 km^(2)) Jiudouyang(JDY) maar. The lacustrine stratigraphy revealed by drilling cores shows that the JDY maar lake has three major stages of evolution:(i) deep-lake sedimentary environment characterized by high autochthonous diatom productivity;(ii) shallow lake to swamp with very low water levels, characterized by a high total organic carbon(TOC) and abundant wood fragments;and,(iii) intermittent shallow lake and alluvial deposits composed of clay minerals and sand. The electrical resistivity tomography(ERT) values and lithological features are highly consistent, which clearly reveal the presence of ca. 50 m thick lacustrine sediments, directly underlain by a ca. 70 m thick basaltic lava rather than diatreme breccia in the crater. This infill sequence implies an alternation of eruption style from phreatomagmatic to Strombolian and/or lava flow, due to high magma flux and ascent rate of the Hainan Plume during the middle Pleistocene. The ERT data also reveal the initial phreatomagmatic crater floor at ca. 120 m depth. The initial crater had a large diameter/depth ratio(ca. 17), with an elongated shape(major axis to minor axis = 0.6), implying possible lateral vent migration during the eruption. A significant erosion under tropical weathering condition during the last few hundred thousand years, accounted for the large size of the maar crater. The study provides insights into the eruptive history and post-eruptive evolution of a large maar, as well as th
基金the National Natural Science Foundation of China.
文摘Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.
文摘A 2D velocity field of the eruptive prominence (EP) of 1991 March 5 is obtained from its spectral data observed at the Yunnan Observatory and the velocity distributions along the entrance slit are derived for different observing frames. Under the assumption that matter in the EP undergoes axial, radial and possible rotational motions, we construct a theoretical velocity distribution of the EP along the entrance slit, to derive, by fitting, the angular velocity of rotation ω and the other three parameters (axial velocity v0, radial velocity vr and the angle between the EP plane and the line of sight Ф). We found: an averaged angular velocity ω of 3.0 × 10^-3 arc s^-1 and the variation of ω with the height above the solar limb. As the EP rises, the matter within it in fact moves along a spiral path around its axis. The spiral motion may be explained by the theory of plasma ‘double pole diffusion' (DPD) caused by a sharp density gradient between the eruptive prominence and the surrounding corona. A theoretical angular velocity ω′ is estimated based on the DPD and basically coincides with ω obtained from the optimal velocity fitting.
文摘Diabetes mellitus (DM) is a most common endocrine disorder and it is characterized by high serum glucose levels and by disturbance of lipid metabolism. As a result, the patients can develop long-term systemic complications. Numerous skin lesions are associated with either type 1 or type 2 diabetes mellitus, and they are specific chronic complications of the disease. Cutaneous xanthomas result from deposition of lipids in the histiocytes in the dermis or subcutaneous tissue. Eruptive xanthomas are a characteristic, but uncommon complication of diabetes mellitus associated with a more sustained hyperlipidemia affecting plasma triglycerides and cholesterol, and hyperglycemia with glycosuria.
文摘In this paper, a solution of the problem about how a massive star knows that it gets rid of its excess of mass before it can become a white dwarf, a pulsar or a black hole, is proposed. Many astronomers believe that this may take place in the form of a nova and supernova outburst, as well as in the form of a continuous outflow of gas [1].
文摘The Barombi Mbo Maar (BMM), which is the largest maar in Cameroon, possesses about 126 m-thick well-preserved pyroclastic deposits sequence in which two successive paleosoil beds have been identified. The maar was thought to have been active a million years ago. However, layers stratigraphically separated by the identified paleosoils have been dated to shed lights on its age and to reconstruct the chronology of its past activity. The results showed that the BMM formed through three eruptive cycles: the first ~0.51 Ma ago, the second at ~0.2 Ma and the third ~0.08 Ma B.P. The ages indicate that the BMM maar-forming eruptions were younger than a million years. The findings also suggested that the maar is polygenetic. At a regional scale, the eruptive events would have occurred during some volcanic manifestations at Mt Manengouba and Mt Cameroon. Therefore, with the decrease in the recurrence time of eruptions from ~0.3 Ma to 0.1 Ma, and given the possible relation between its eruptive events and those of its neighboring polygenetic volcanoes, the BMM is expected to erupt within the next 20 ka.