The coast of southern Hainan Island is characterized by wide sandy embayments, which consist of ( i) drowned valleys bounded by steep bedrock hills and only locally receiving sediments, and embayments of various dimen...The coast of southern Hainan Island is characterized by wide sandy embayments, which consist of ( i) drowned valleys bounded by steep bedrock hills and only locally receiving sediments, and embayments of various dimensions covered either by (ii) alluvial-deltaic deposits or by (iii) sands of coastal beach ridges/barriers and associated elongated lagoons. During the late Tertiary-Pleistocene the area has experienced isostatic and eustatic movements associated with neotectonics and climatic changes. Such history isrecorded in terraces at various altitudes (SO, 40, 20 m asl) and sequences of coastal sand ridges/baymouth bars. The Holocene variations in sea level and climate are recorded in the dated coastal ridges, coral reef and beachrock. Conditions suitable for reef development started about 8000 a BP. The GPR profiles also show that the internal structures of the sand ridges have composite nature being formed by several superimposed secondary ridges.展开更多
Background:Motor adaptation relies on error-based learning for accurate movements in changing environ-ments.However,the neurophysiological mechanisms driving individual differences in performance are unclear.Transcran...Background:Motor adaptation relies on error-based learning for accurate movements in changing environ-ments.However,the neurophysiological mechanisms driving individual differences in performance are unclear.Transcranial magnetic stimulation(TMS)-evoked potential can provide a direct measure of cortical excitability.Objective:To investigate cortical excitability as a predictor of motor learning and motor adaptation in a robot-mediated forcefield.Methods:A group of 15 right-handed healthy participants(mean age 23 years)performed a robot-mediated forcefield perturbation task.There were two conditions:unperturbed non-adaptation and perturbed adapta-tion.TMS was applied in the resting state at baseline and following motor adaptation over the contralateral primary motor cortex(left M1).Electroencephalographic(EEG)activity was continuously recorded,and cortical excitability was measured by TMS-evoked potential(TEP).Motor learning was quantified by the motor learning index.Results:Larger error-related negativity(ERN)in fronto-central regions was associated with improved motor per-formance as measured by a reduction in trajectory errors.Baseline TEP N100 peak amplitude predicted motor learning(P=0.005),which was significantly attenuated relative to baseline(P=0.0018)following motor adap-tation.Conclusions:ERN reflected the formation of a predictive internal model adapted to the forcefield perturbation.Attenuation in TEP N100 amplitude reflected an increase in cortical excitability with motor adaptation reflecting neuroplastic changes in the sensorimotor cortex.TEP N100 is a potential biomarker for predicting the outcome in robot-mediated therapy and a mechanism to investigate psychomotor abnormalities in depression.展开更多
The dynamic characteristic of complex network failure and recovery is one of the main research topics in complex networks. Real world systems such as traffic jams and Internet recovery could be described by the comple...The dynamic characteristic of complex network failure and recovery is one of the main research topics in complex networks. Real world systems such as traffic jams and Internet recovery could be described by the complex network theory. We propose a model to study the recovery process in complex networks. Two different recovery mechanisms are considered in three kinds of networks: external recovery and internal recovery. By simulating the process of the nodes recovery in networks, it is found that the system exhibits the feature of first-order phase transition only when the external recovery is considered. Internal recovery cannot induce such a kind of transitions. As external recovery and internal recovery coexist on networks, the systems will retain the most efficient part of external recovery and internal recovery. Meanwhile, a hysteresis could be observed when increasing or decreasing the failure probability. Finally, a largest degree node protection strategy is proposed for improving the robustness of networks.展开更多
We investigate the collective dynamics of network-organized identical excitable nodes. We theoretically analyze the stability of the rest state and propose that there are two different transition paths: the stationar...We investigate the collective dynamics of network-organized identical excitable nodes. We theoretically analyze the stability of the rest state and propose that there are two different transition paths: the stationary path and the oscillatory path. We find that, although the onset of collective dynamics strongly depend on the network topology, the local dynamics and how local nodes interact with each other decide the transition path and the involved bifurcation.展开更多
基金Concerned research works have got the powerful support from State Pilot Laboratory of Coast & Island Exploitation, Nanjing University, Most staffs from this lab have joined the series of fieldwork, and also done many kinds of indoor analyses. Recent stud
文摘The coast of southern Hainan Island is characterized by wide sandy embayments, which consist of ( i) drowned valleys bounded by steep bedrock hills and only locally receiving sediments, and embayments of various dimensions covered either by (ii) alluvial-deltaic deposits or by (iii) sands of coastal beach ridges/barriers and associated elongated lagoons. During the late Tertiary-Pleistocene the area has experienced isostatic and eustatic movements associated with neotectonics and climatic changes. Such history isrecorded in terraces at various altitudes (SO, 40, 20 m asl) and sequences of coastal sand ridges/baymouth bars. The Holocene variations in sea level and climate are recorded in the dated coastal ridges, coral reef and beachrock. Conditions suitable for reef development started about 8000 a BP. The GPR profiles also show that the internal structures of the sand ridges have composite nature being formed by several superimposed secondary ridges.
基金supported by a University of East London Excellence PhD scholarship to MT and in part from a Medical Research Council grant to CF(grant number G0802594).
文摘Background:Motor adaptation relies on error-based learning for accurate movements in changing environ-ments.However,the neurophysiological mechanisms driving individual differences in performance are unclear.Transcranial magnetic stimulation(TMS)-evoked potential can provide a direct measure of cortical excitability.Objective:To investigate cortical excitability as a predictor of motor learning and motor adaptation in a robot-mediated forcefield.Methods:A group of 15 right-handed healthy participants(mean age 23 years)performed a robot-mediated forcefield perturbation task.There were two conditions:unperturbed non-adaptation and perturbed adapta-tion.TMS was applied in the resting state at baseline and following motor adaptation over the contralateral primary motor cortex(left M1).Electroencephalographic(EEG)activity was continuously recorded,and cortical excitability was measured by TMS-evoked potential(TEP).Motor learning was quantified by the motor learning index.Results:Larger error-related negativity(ERN)in fronto-central regions was associated with improved motor per-formance as measured by a reduction in trajectory errors.Baseline TEP N100 peak amplitude predicted motor learning(P=0.005),which was significantly attenuated relative to baseline(P=0.0018)following motor adap-tation.Conclusions:ERN reflected the formation of a predictive internal model adapted to the forcefield perturbation.Attenuation in TEP N100 amplitude reflected an increase in cortical excitability with motor adaptation reflecting neuroplastic changes in the sensorimotor cortex.TEP N100 is a potential biomarker for predicting the outcome in robot-mediated therapy and a mechanism to investigate psychomotor abnormalities in depression.
基金Supported by the National Natural Science foundation of China under Grant No 11474221
文摘The dynamic characteristic of complex network failure and recovery is one of the main research topics in complex networks. Real world systems such as traffic jams and Internet recovery could be described by the complex network theory. We propose a model to study the recovery process in complex networks. Two different recovery mechanisms are considered in three kinds of networks: external recovery and internal recovery. By simulating the process of the nodes recovery in networks, it is found that the system exhibits the feature of first-order phase transition only when the external recovery is considered. Internal recovery cannot induce such a kind of transitions. As external recovery and internal recovery coexist on networks, the systems will retain the most efficient part of external recovery and internal recovery. Meanwhile, a hysteresis could be observed when increasing or decreasing the failure probability. Finally, a largest degree node protection strategy is proposed for improving the robustness of networks.
基金Supported by the National Natural Science Foundation of China under Grant No 71301012
文摘We investigate the collective dynamics of network-organized identical excitable nodes. We theoretically analyze the stability of the rest state and propose that there are two different transition paths: the stationary path and the oscillatory path. We find that, although the onset of collective dynamics strongly depend on the network topology, the local dynamics and how local nodes interact with each other decide the transition path and the involved bifurcation.