Marigold black spot caused by Alternaria tagetica is a major disease that can decrease marigold production by 40%,resulting in serious economic losses.In this study,we identified many genes responsive to A.tagetica in...Marigold black spot caused by Alternaria tagetica is a major disease that can decrease marigold production by 40%,resulting in serious economic losses.In this study,we identified many genes responsive to A.tagetica in the resistant and susceptible marigold genotypes.Analyses of differentially expressed genes,expression trends,and a weighted gene co-expression network revealed a series of hub genes with key roles in different A.tagetica infection stages.Additionally,1216 unigenes encoding transcription factors from eight families were differentially expressed between Ts and Ma.Moreover,R genes fromvarious families(e.g.,N,NL,RLP,and TNL)were differentially expressed in the twomarigold genotypes before and after the inoculation with A.tagetica.Pathway diagrams were used to visualize the leaf transcriptional changes in the two marigold genotypes infected by A.tagetica to clarify the effects of A.tagetica on the expression patterns of genes involved in phosphatidylinositol signaling,plant–pathogen interactions,and plant hormone signal transduction.We identified candidate genes related to disease resistance and generated valuable resources for analyzing the candidate gene functions related to black spot resistance in marigold.The study data may be useful for the molecular marker-assisted screening and breeding of marigold lines with increased disease resistance.展开更多
Marigold(Tagetes erecta L., African marigold) is a widely grown ornamental plant and a main source of the carotenoid lutein for the industrial production of pharmaceuticals, food coloring, and feed additives. To gain ...Marigold(Tagetes erecta L., African marigold) is a widely grown ornamental plant and a main source of the carotenoid lutein for the industrial production of pharmaceuticals, food coloring, and feed additives. To gain a deeper understanding of the genetic mechanism of lutein in marigold, a chromosome-scale assembly of the marigold(T. erecta V-01) genome was completed based on Illumina, PacBio, and Hi-C reads. The707.21-Mb assembled genome consisted of 35 834 annotated protein-coding genes, with 97.7% genomic integrity. We anchored 87.8% of the contigs(covering 621.20 Mb) to 12 pseudochromosomes, bringing the scaffold N50 length to 54.15 Mb. Phylogenetic analysis showed that marigold was closely related to the Asteraceae species bitter vine(Mikania micrantha) and sunflower(Helianthus annuus), all three of which originated in the Americas. Marigold diverged from the sunflower clade 23.57 million years ago(MYA) and from M. micrantha 19.59 MYA.Marigold has undergone three whole-genome duplication events, as well as a recent whole-genome duplication event(WGD-2) common to H.annuus and M. micrantha. Marigold gene families were significantly less expanded than those of M. micrantha or H. annuus, and the marigold genome contained significantly fewer interspersed repeats, which might account for its smaller genome. In addition, a range of candidate genes involved in the lutein biosynthetic pathway were identified. The high-quality reference genome obtained in this study provided a valuable genomic resource for studying the evolution of the Asteraceae family and for improving marigold breeding strategies.展开更多
基金supported by grants from National Natural Science Foundation of China(Grant Nos.32102412)Beijing Academy of Agriculture and Forestry Sciences(Grant Nos.KJCX20220103)Modern Agricultural Industry Technology System Beijing Municipal Landscape Leisure Agriculture Innovation Team Project.
文摘Marigold black spot caused by Alternaria tagetica is a major disease that can decrease marigold production by 40%,resulting in serious economic losses.In this study,we identified many genes responsive to A.tagetica in the resistant and susceptible marigold genotypes.Analyses of differentially expressed genes,expression trends,and a weighted gene co-expression network revealed a series of hub genes with key roles in different A.tagetica infection stages.Additionally,1216 unigenes encoding transcription factors from eight families were differentially expressed between Ts and Ma.Moreover,R genes fromvarious families(e.g.,N,NL,RLP,and TNL)were differentially expressed in the twomarigold genotypes before and after the inoculation with A.tagetica.Pathway diagrams were used to visualize the leaf transcriptional changes in the two marigold genotypes infected by A.tagetica to clarify the effects of A.tagetica on the expression patterns of genes involved in phosphatidylinositol signaling,plant–pathogen interactions,and plant hormone signal transduction.We identified candidate genes related to disease resistance and generated valuable resources for analyzing the candidate gene functions related to black spot resistance in marigold.The study data may be useful for the molecular marker-assisted screening and breeding of marigold lines with increased disease resistance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 31572166, 31772344, 31871691 and 31972444)。
文摘Marigold(Tagetes erecta L., African marigold) is a widely grown ornamental plant and a main source of the carotenoid lutein for the industrial production of pharmaceuticals, food coloring, and feed additives. To gain a deeper understanding of the genetic mechanism of lutein in marigold, a chromosome-scale assembly of the marigold(T. erecta V-01) genome was completed based on Illumina, PacBio, and Hi-C reads. The707.21-Mb assembled genome consisted of 35 834 annotated protein-coding genes, with 97.7% genomic integrity. We anchored 87.8% of the contigs(covering 621.20 Mb) to 12 pseudochromosomes, bringing the scaffold N50 length to 54.15 Mb. Phylogenetic analysis showed that marigold was closely related to the Asteraceae species bitter vine(Mikania micrantha) and sunflower(Helianthus annuus), all three of which originated in the Americas. Marigold diverged from the sunflower clade 23.57 million years ago(MYA) and from M. micrantha 19.59 MYA.Marigold has undergone three whole-genome duplication events, as well as a recent whole-genome duplication event(WGD-2) common to H.annuus and M. micrantha. Marigold gene families were significantly less expanded than those of M. micrantha or H. annuus, and the marigold genome contained significantly fewer interspersed repeats, which might account for its smaller genome. In addition, a range of candidate genes involved in the lutein biosynthetic pathway were identified. The high-quality reference genome obtained in this study provided a valuable genomic resource for studying the evolution of the Asteraceae family and for improving marigold breeding strategies.