The active mechanisms of rare earth element erbium ( Er ) in part of aluminum alloys were investigated. Based on the investigation of the effect of the unitary rare earth elements (Er, La, Y, Ce, Nd, Gd, and Sc) and t...The active mechanisms of rare earth element erbium ( Er ) in part of aluminum alloys were investigated. Based on the investigation of the effect of the unitary rare earth elements (Er, La, Y, Ce, Nd, Gd, and Sc) and the transition element zirconium on the aluminum alloys, it is concluded that, with Er alloyed, high purity aluminum and Al Mg alloys are featured with refined grain structure, superior heat stability and even higher hardness or tensile strength with unchanged ductility; but Er is not beneficial to the mechanical property of Al Cu alloy, so is Sc. It may also be concluded, to most of the aluminum alloys, Er can be an effective alloying element, like Sc; and for the lower price of Er, the cost of modifying aluminum alloys by Er will be reduced.展开更多
The adsorption behavior and mechanism of a novel chelate resin, diglycolamidic acid resin (DAAR) for Er(Ⅲ) were investigated. The optima adsorption condition of DAAR for Er(Ⅲ) is pH 6.20 in HAc NaAc medium. The sta...The adsorption behavior and mechanism of a novel chelate resin, diglycolamidic acid resin (DAAR) for Er(Ⅲ) were investigated. The optima adsorption condition of DAAR for Er(Ⅲ) is pH 6.20 in HAc NaAc medium. The statically saturated adsorption capacity is 189 mg·g -1 resin at 298 K. The Er (Ⅲ) adsorbed on DAAR can be eluted reaching 100% by 2 mol·L -1 HCl used as eluant. The resin can be regenerated and reused without apparent decreasing of adsorption capacity. The apparent adsorption rate constant is k 298 =1.94×10 -5 s -1 . The apparent activation energy is 24.7 kJ·mol -1 . The adsorption behavior of DAAR for Er(Ⅲ) obeys the Freundlich isotherm. The thermodynamic adsorption parameters, enthalpy change Δ H of DAAR for Er(Ⅲ) is 24.1 kJ·mol -1 . The molar coordination ratio of the functional group of DAAR to Er (Ⅲ) is 3∶1. The adsorption mechanism of DAAR for Er (Ⅲ) was examined by using chemical method and IR spectrometry. The coordination compound is formed between oxygen atoms in the functional group of DAAR and Er(Ⅲ).展开更多
A practical two-stage double-pass structure using high concentration erbium-doped fiber and 1480-nm pump laser diode is suggested for a high power and broad bandwidth erbium-doped superfluorcscent fiber source. A cons...A practical two-stage double-pass structure using high concentration erbium-doped fiber and 1480-nm pump laser diode is suggested for a high power and broad bandwidth erbium-doped superfluorcscent fiber source. A considerable increase in output power and bandwidth extension is achieved by adding an unpumped fiber and a broadband fiber mirror to make the most of wasted backward amplified spontaneous emission as both pump and input light source simultaneously. Superfluorcscent fiber source with nearly 80-nm bandwidth and 28.6-mW output power is obtained experimentally.展开更多
The microstructure of an as-cast Mg-Zn-Er alloy was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The resu...The microstructure of an as-cast Mg-Zn-Er alloy was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The results indicate that two different second phases, one with eutectoid-lamellar morphology and the other with granular shape, distribute in the α-Mg matrix. The coexistence of the face-centered icosahedral quasicrystalline phase (I-phase) and W-phase with the face-centered cubic structure is found in the as-cast alloy. The coexistence of I-phase and W-phase in the Mg-Zn-Er alloy is because the W-phase is the primary phase and the I-phase forms by peritectic reaction during solidification.展开更多
文摘The active mechanisms of rare earth element erbium ( Er ) in part of aluminum alloys were investigated. Based on the investigation of the effect of the unitary rare earth elements (Er, La, Y, Ce, Nd, Gd, and Sc) and the transition element zirconium on the aluminum alloys, it is concluded that, with Er alloyed, high purity aluminum and Al Mg alloys are featured with refined grain structure, superior heat stability and even higher hardness or tensile strength with unchanged ductility; but Er is not beneficial to the mechanical property of Al Cu alloy, so is Sc. It may also be concluded, to most of the aluminum alloys, Er can be an effective alloying element, like Sc; and for the lower price of Er, the cost of modifying aluminum alloys by Er will be reduced.
文摘The adsorption behavior and mechanism of a novel chelate resin, diglycolamidic acid resin (DAAR) for Er(Ⅲ) were investigated. The optima adsorption condition of DAAR for Er(Ⅲ) is pH 6.20 in HAc NaAc medium. The statically saturated adsorption capacity is 189 mg·g -1 resin at 298 K. The Er (Ⅲ) adsorbed on DAAR can be eluted reaching 100% by 2 mol·L -1 HCl used as eluant. The resin can be regenerated and reused without apparent decreasing of adsorption capacity. The apparent adsorption rate constant is k 298 =1.94×10 -5 s -1 . The apparent activation energy is 24.7 kJ·mol -1 . The adsorption behavior of DAAR for Er(Ⅲ) obeys the Freundlich isotherm. The thermodynamic adsorption parameters, enthalpy change Δ H of DAAR for Er(Ⅲ) is 24.1 kJ·mol -1 . The molar coordination ratio of the functional group of DAAR to Er (Ⅲ) is 3∶1. The adsorption mechanism of DAAR for Er (Ⅲ) was examined by using chemical method and IR spectrometry. The coordination compound is formed between oxygen atoms in the functional group of DAAR and Er(Ⅲ).
文摘A practical two-stage double-pass structure using high concentration erbium-doped fiber and 1480-nm pump laser diode is suggested for a high power and broad bandwidth erbium-doped superfluorcscent fiber source. A considerable increase in output power and bandwidth extension is achieved by adding an unpumped fiber and a broadband fiber mirror to make the most of wasted backward amplified spontaneous emission as both pump and input light source simultaneously. Superfluorcscent fiber source with nearly 80-nm bandwidth and 28.6-mW output power is obtained experimentally.
基金supported by the National Major Fundamental Research Program of China (No. 2007CB613706)
文摘The microstructure of an as-cast Mg-Zn-Er alloy was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The results indicate that two different second phases, one with eutectoid-lamellar morphology and the other with granular shape, distribute in the α-Mg matrix. The coexistence of the face-centered icosahedral quasicrystalline phase (I-phase) and W-phase with the face-centered cubic structure is found in the as-cast alloy. The coexistence of I-phase and W-phase in the Mg-Zn-Er alloy is because the W-phase is the primary phase and the I-phase forms by peritectic reaction during solidification.