Necessary and sufficient conditions for a schur complement of a con-s-k-EP matrix to be con-s-k-EP are determined. Further it is shown that in a con-s-k-EPr matrix, every secondary sub matrix of rank “r” is con-s-k-...Necessary and sufficient conditions for a schur complement of a con-s-k-EP matrix to be con-s-k-EP are determined. Further it is shown that in a con-s-k-EPr matrix, every secondary sub matrix of rank “r” is con-s-k-EPr. We have also discussed the way of expressing a matrix of rank r as a product of con-s-k-EPr matrices. Necessary and sufficient conditions for products of con-s-k-EPr partitioned matrices to be con-s-k-EPr are given.展开更多
文摘Necessary and sufficient conditions for a schur complement of a con-s-k-EP matrix to be con-s-k-EP are determined. Further it is shown that in a con-s-k-EPr matrix, every secondary sub matrix of rank “r” is con-s-k-EPr. We have also discussed the way of expressing a matrix of rank r as a product of con-s-k-EPr matrices. Necessary and sufficient conditions for products of con-s-k-EPr partitioned matrices to be con-s-k-EPr are given.