Comprehensive Summary Catalytic dehydrogenation,with its exceptional atom economy and chemoselectivity,offers a highly desirable yet challenging approach for converting multiple environmentally friendly alcohols into ...Comprehensive Summary Catalytic dehydrogenation,with its exceptional atom economy and chemoselectivity,offers a highly desirable yet challenging approach for converting multiple environmentally friendly alcohols into crucial molecules.Furthermore,the utilization of catalysts based on abundant elements found on Earth for alcohol dehydrogenation to produce acryl ketone holds significant promise as a versatile strategy in synthesizing key building blocks for numerous pharmaceutical applications.The present study describes a practical Co-catalyzed cascade dehydrogenative Claisen condensation of secondary alcohols with esters,facilitating the synthesis of a wide range of 3-hydroxy-prop-2-en-1-ones.We introduce a catalytic system based on novel and scalable indazole NNP-ligands coordinated to cobalt for efficient dehydrogenations of secondary alcohols,and propose a plausible reaction mechanism supported by control experiments and labeling studies.Notably,it allows for the streamlined synthesis of multiple pharmaceuticals in one-pot.展开更多
Photo-induced electron transfer (PET) of silyl enol ethers has been employed to synthesize several fused ring systems. However, the method has limited applicability due to its narrow substrate scope, low product yield...Photo-induced electron transfer (PET) of silyl enol ethers has been employed to synthesize several fused ring systems. However, the method has limited applicability due to its narrow substrate scope, low product yields, unsatisfactory stereo- and regioselectivity. Herein, we report a PET-triggered cascade reaction of silyl enolates that leads to the formation of angularly fused tricyclic scaffolds. The reaction exhibits broad substrate scope and excellent stereoselectivity. The regio- and stereoselectivity of this cascade reaction is elucidated via DFT calculation and conformational analysis.展开更多
基金supported by the National Natural Science Foundation of China(22002067,22202228)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20220052)the Science and Technology Project of Shanxi Province(202103021223457,202303021221256)and Research Project Supported by Shanxi Scholarship Council of China.
文摘Comprehensive Summary Catalytic dehydrogenation,with its exceptional atom economy and chemoselectivity,offers a highly desirable yet challenging approach for converting multiple environmentally friendly alcohols into crucial molecules.Furthermore,the utilization of catalysts based on abundant elements found on Earth for alcohol dehydrogenation to produce acryl ketone holds significant promise as a versatile strategy in synthesizing key building blocks for numerous pharmaceutical applications.The present study describes a practical Co-catalyzed cascade dehydrogenative Claisen condensation of secondary alcohols with esters,facilitating the synthesis of a wide range of 3-hydroxy-prop-2-en-1-ones.We introduce a catalytic system based on novel and scalable indazole NNP-ligands coordinated to cobalt for efficient dehydrogenations of secondary alcohols,and propose a plausible reaction mechanism supported by control experiments and labeling studies.Notably,it allows for the streamlined synthesis of multiple pharmaceuticals in one-pot.
基金supported by NSFC(21925106,U19A2014)Si-chuan University(2020SCUNL204)Department of Science and Technology of Sichuan Province(2023NSFSC0105).
文摘Photo-induced electron transfer (PET) of silyl enol ethers has been employed to synthesize several fused ring systems. However, the method has limited applicability due to its narrow substrate scope, low product yields, unsatisfactory stereo- and regioselectivity. Herein, we report a PET-triggered cascade reaction of silyl enolates that leads to the formation of angularly fused tricyclic scaffolds. The reaction exhibits broad substrate scope and excellent stereoselectivity. The regio- and stereoselectivity of this cascade reaction is elucidated via DFT calculation and conformational analysis.