云计算是一种基于信息网络的计算模式和服务模式,它将信息技术资源以服务方式动态、弹性地提供给用户,使用户可以按需使用。由于受到主机的启动时间、资源分配时间以及任务调度时间等因素的影响,在云环境下提供给用户的服务存在时延问...云计算是一种基于信息网络的计算模式和服务模式,它将信息技术资源以服务方式动态、弹性地提供给用户,使用户可以按需使用。由于受到主机的启动时间、资源分配时间以及任务调度时间等因素的影响,在云环境下提供给用户的服务存在时延问题。因此,工作负载预测是云环境下一种重要的能源优化的方式。此外,由于云中工作负载的变化具有十分大的波动性,因此增加了预测模型的预测难度。提出了一种基于自回归模型和Elman神经网络的预测模型(Hybrid Auto Regressive Moving Average model and Elman neural network,HARMA-E),其使用ARMA模型进行预测,再使用ENN模型对ARMA模型的误差进行预测,通过修正ARMA的输出值得到最终的预测值。仿真实验结果表明,该预测模型能够较好地提升主机负载预测值的准确度。展开更多
Presents a study which constructed a high accurate difference scheme based on the ENN scheme. Overview of ENN scheme and several high order accuracy central schemes; Numerical method used; Relation between the weighte...Presents a study which constructed a high accurate difference scheme based on the ENN scheme. Overview of ENN scheme and several high order accuracy central schemes; Numerical method used; Relation between the weighted functions and the accuracy of scheme.展开更多
Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this pap...Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model.展开更多
文摘云计算是一种基于信息网络的计算模式和服务模式,它将信息技术资源以服务方式动态、弹性地提供给用户,使用户可以按需使用。由于受到主机的启动时间、资源分配时间以及任务调度时间等因素的影响,在云环境下提供给用户的服务存在时延问题。因此,工作负载预测是云环境下一种重要的能源优化的方式。此外,由于云中工作负载的变化具有十分大的波动性,因此增加了预测模型的预测难度。提出了一种基于自回归模型和Elman神经网络的预测模型(Hybrid Auto Regressive Moving Average model and Elman neural network,HARMA-E),其使用ARMA模型进行预测,再使用ENN模型对ARMA模型的误差进行预测,通过修正ARMA的输出值得到最终的预测值。仿真实验结果表明,该预测模型能够较好地提升主机负载预测值的准确度。
基金the National Natural Science Foundation of China under grant NO.19582007 and The Key Laboratory of Scientific/Engineering Comp
文摘Presents a study which constructed a high accurate difference scheme based on the ENN scheme. Overview of ENN scheme and several high order accuracy central schemes; Numerical method used; Relation between the weighted functions and the accuracy of scheme.
基金Supported in part by the National Natural Science Foundation of China (No.60272046, No.60102011), Na-tional High Technology Project of China (No.2002AA143010), Natural Science Foundation of Jiangsu Province (No.BK2001042), and the Foundation for Excellent Doctoral Dissertation of Southeast Univer-sity (No.YBJJ0412).
文摘Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model.