Alzheimer’s disease(AD),the most common neurodegenerative disorder,is characterized by memory loss and cognitive dysfunction.The accumulation of misfolded protein aggregates including amyloid beta(Aβ)peptides and mi...Alzheimer’s disease(AD),the most common neurodegenerative disorder,is characterized by memory loss and cognitive dysfunction.The accumulation of misfolded protein aggregates including amyloid beta(Aβ)peptides and microtubule associated protein tau(MAPT/tau)in neuronal cells are hallmarks of AD.So far,the exact underlying mechanisms for the aetiologies of AD have not been fully understood and the effective treatment for AD is limited.Autophagy is an evolutionarily conserved cellular catabolic process by which damaged cellular organelles and protein aggregates are degraded via lysosomes.Recently,there is accumulating evidence linking the impairment of the autophagy-lysosomal pathway with AD pathogenesis.Interestingly,the enhancement of autophagy to remove protein aggregates has been proposed as a promising therapeutic strategy for AD.Here,we first summarize the recent genetic,pathological and experimental studies regarding the impairment of the autophagy-lysosomal pathway in AD.We then describe the interplay between the autophagy-lysosomal pathway and two pathological proteins,Aβand MAPT/tau,in AD.Finally,we discuss potential therapeutic strategies and small molecules that target the autophagy-lysosomal pathway for AD treatment both in animal models and in clinical trials.Overall,this article highlights the pivotal functions of the autophagy-lysosomal pathway in AD pathogenesis and potential druggable targets in the autophagy-lysosomal pathway for AD treatment.展开更多
AIM: To investigate the absorption characteristics of the total alkaloids from Mahoniae Caulis(TAMC) through the administration of monterpene absorption enhancers or protein inhibitors. METHOD: The absorption behavior...AIM: To investigate the absorption characteristics of the total alkaloids from Mahoniae Caulis(TAMC) through the administration of monterpene absorption enhancers or protein inhibitors. METHOD: The absorption behavior was investigated in an in situ single-pass intestinal perfusion(SPIP) assay in rats. RESULTS: The intestinal absorption of TAMC was much more than that of a single compound or a mixture of compounds(jatrorrhizine, palmatine, and berberine). Promotion of absorption by the bicyclic monoterpenoids(borneol or camphor) was higher than by the monocyclic monoterpenes(menthol or menthone), and promotion by compounds with a hydroxyl group(borneol or menthol) was higher than those with a carbonyl group(camphor or menthone). The apparent permeability coefficient(Papp) of TAMC was increased to 1.8-fold by verapamil, while it was reduced to one half by thiamine. The absorption rate constant(Ka) and Papp of TAMC were unchanged by probenecid and pantoprazole. CONCLUSION: The intestinal absorption characteristics of TAMC might be passive transport, and the intestinum tenue was the best absorptive site. In addition, TAMC might be likely a substrate of P-glycoprotein(P-gp) and organic cation transporters(OCT), rather than multidrug resistance protein(MRP) and breast cancer resistance protein(BCRP). Compared with a single compound and a mixture of compounds, TAMC was able to be absorbed in the blood circulation effectively.展开更多
Bone graft substitutes are widely used in the field of orthopedics and are extensively used to promote vertebral fusion. Fusion is the most common technique in spine surgery and is used to treat morbidities and reliev...Bone graft substitutes are widely used in the field of orthopedics and are extensively used to promote vertebral fusion. Fusion is the most common technique in spine surgery and is used to treat morbidities and relieve discomfort. Allograft and autograft bone substitutes are currently the most commonly used bone grafts to promote fusion. These approaches pose limitations and present complications to the patient. Numerous alternative bone graft substitutes are on the market or have been developed and proposed for application. These options have attempted to promote spine fusion by enhancing osteogenic properties. In this review, we reviewed biology of spine fusion and the current advances in biomedical materials and biological strategies for application in surgical spine fusion. Our findings illustrate that, while many bone graft substitutes perform well as bone graft extenders, only osteoinductive proteins(recombinant bone morphogenetic proteins-2 and osteogenic protein-1) provide evidence for use as both bone enhancers and bone substitutes for specific types of spinal fusion. Tissue engineered hydrogels, synthetic polymer composites and viral based gene therapy also holds the potential to be used for spine fusion in future, though warrants further investigation to be used in clinical practice.展开更多
The transdermal drug delivery(TDD) shows considerable advantages over other administration pathways.However, conventional enhancing permeation methods face a series of challenges owing to barrier function provided by ...The transdermal drug delivery(TDD) shows considerable advantages over other administration pathways.However, conventional enhancing permeation methods face a series of challenges owing to barrier function provided by the skin, of which enhancing abilities either are so strong that it results in toxicity and irritation, or too weak to achieve desirable therapeutical effects. To address these issues, it is an urgent need to develop a novel method to overcome the limitations of current measures. Fortunately, in the preceding decades, ionic liquids(ILs) have been extensively studied and increasingly applied in pharmaceutical drug delivery due to their unique physicochemical and biological properties. What is more, tunability of structure resolves the challenges in processing active pharmaceutical ingredient(API) formulation, such as polymorphism and poor solubility of drugs. Thus, the presence of ILs provides an ample design space for the transdermal drug delivery system(TDDS). This review discusses the shortcomings of conventional enhancing permeation methods and introduces the application of ILs in transdermal delivery from three aspects: i) ILs are applied as enhancers to weaken the barrier function of the stratum corneum(SC). ii) As counterions, ILs are combined with API to modify the physicochemical properties of drugs. iii) ILs assist in the design of transdermal preparation for perfecting formulation. This review comprehensively introduces the major breakthroughs made in the applications of ILs, which can serve as guidance to provide novel ideas for formulation scientists who hit the bottleneck in the development of TDD.展开更多
Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as pene...Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as penetration enhancers.Methods In this study;210 different structural types of VOCs were selected from the VOCMM penetration enhancer database;and the molecular docking experiments were conducted with three main lipid molecules of skin:ceramide 2(CER2);cholesterol(CHL);and free fatty acid(FFA).Each VOC was docked individually with each lipid molecule.Cluster analysis was used to explore the relationship between the binding energy of VOCs and their molecular struc-tures.Nine specific pathogen-free(SPF)Sprague Dawley(SD)rats were randomly divided in-to Control;Nootkatone;and 3-Butylidenephthalide groups for in vitro percutaneous experi-ments;with three rats in each group.The donor pool solutions were 3%gastrodin;3%gas-trodin+3%nootkatone;and 3%gastrodin+3%3-butylidenephthalide;respectively.The pen-etration enhancing effects of VOCs with higher binding energy were evaluated by comparing the 12-hour cumulative percutaneous absorption of gastrodin(Q12;µg/cm²).Results(i)Most of the VOCs were non-hydrogen bonded to the hydrophobic parts of CHL and FFA;and hydrogen bonded to the head group of CER2.Among them;sesquiterpene ox-ides showed the most pronounced binding affinity to CER2.The VOCs with 2-4 rings(in-cluding carbon rings;benzene rings;and heterocycles)demonstrated stronger binding affini-ty for three skin lipid molecules compared with the VOCs without intramolecular rings(P<0.01).(ii)According to the cluster analysis;most of the VOCs that bond well to CER2 had 2-3 intramolecular rings.The non-oxygenated VOCs were bonded to CER2 in a hydrophobic manner.The oxygenated VOCs were mostly bonded to CER2 by hydrogen bonding.(iii)The results of Franz diffusion cell experiment showed that the Q12 of Control group was 260.60±25.09µg/cm2;and the transdermal absorption of gastrodin was significantly increased in N展开更多
Background:The pig is an economically important livestock species and is a widely applied large animal model in medical research.Enhancers are critical regulatory elements that have fundamental functions in evolution,...Background:The pig is an economically important livestock species and is a widely applied large animal model in medical research.Enhancers are critical regulatory elements that have fundamental functions in evolution,development and disease.Genome-wide quantification of functional enhancers in the pig is needed.Results:We performed self-transcribing active regulatory region sequencing(STARR-seq)in the porcine kidney epithelial PK15 and testicular ST cell lines,and reliably identified 2576 functional enhancers.Most of these enhancers were located in repetitive sequences and were enriched within silent and lowly expressed genes.Enhancers poorly overlapped with chromatin accessibility regions and were highly enriched in chromatin with the repressive histone modification H3K9me3,which is different from predicted pig enhancers detected using ChIP-seq for H3K27ac or/and H3K4me1 modified histones.This suggests that most pig enhancers identified with STARR-seq are endogenously repressed at the chromatin level and may function during cell type-specific development or at specific developmental stages.Additionally,the PPP3CA gene is associated with the loin muscle area trait and the QKI gene is associated with alkaline phosphatase activity that may be regulated by distal functional enhancers.Conclusions:In summary,we generated the first functional enhancer map in PK15 and ST cells for the pig genome and highlight its potential roles in pig breeding.展开更多
Enhancers and super-enhancers exert indispensable roles in maintaining cell identity through spatiotemporally regulating gene transcription.Meanwhile,active enhancers and super-enhancers also produce transcripts terme...Enhancers and super-enhancers exert indispensable roles in maintaining cell identity through spatiotemporally regulating gene transcription.Meanwhile,active enhancers and super-enhancers also produce transcripts termed enhancer RNAs(eRNAs) from their DNA elements.Although enhancers have been identified for more than 30 years,widespread transcription from enhancers are just discovered by genome-wide sequencing and considered as the key to understand longstanding questions in gene transcription.RNA-transcribed enhancers are marked by histone modifications such as H3K4m1/2 and H3K27Ac,and enriched with transcription regulatory factors such as LDTFs,P300,CBP,BRD4 and MED1.Those regulatory factors might constitute a Mega-Trans-like complex to potently activate enhancers.Compared to mRNAs,eRNAs are quite unstable and play roles at local.Functionally,it has been shown that e RNAs promote formation of enhancer-promoter loops.Several studies also demonstrated that eRNAs help the binding of RNA polymerase II(RNAPII) or transition of paused RNAPII by de-association of the negative elongation factor(NELF) complex.Nevertheless,these proposed mechanisms are not universally accepted and still under controversy.Here,we comprehensively summarize the reported findings and make perspectives for future exploration.We also believe that super-enhancer derived RNAs(seRNAs) might be informative to understand the nature of super-enhancers.展开更多
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs with regulatory functions. Traditionally, miRNAs are thought to play a negative regulatory role in the cytoplasm by binding to the YUTR of target genes to...MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs with regulatory functions. Traditionally, miRNAs are thought to play a negative regulatory role in the cytoplasm by binding to the YUTR of target genes to degrade mRNA or inhibit translation. However, it remains a challenge to interpret the potential function of many miRNAs located in the nucleus. Recently, we reported a new type of miRNAs present in the nucleus, which can activate gene expres- sion by binding to the enhancer, and named them nuclear activating miRNAs (NamiRNAs). The discovery of NamiRNAs showcases a complementary regulatory mechanism of miRNA, demon- strating their differential roles in the nucleus and cytoplasm. Here, we reviewed miRNAs in nucleus to better understand the function of NamiRNAs in their interactions with the enhancers. Accord- ingly, we propose a NamiRNA--enhancer-target gene activation network model to better under- stand the crosstalk between NamiRNAs and enhancers in regulating gene transcription. Moreover, we hypothesize that NamiRNAs may be involved in cell identity or cell fate determina- tion during development, although further study is needed to elucidate the underlying mechanisms in detail.展开更多
OBJECTIVE: To investigate on the cytotoxicity and penetration enhancement effect of essential oils(EOs) from warming the interior medicinals(WIM)from Traditional Chinese Medicine(TCM).METHODS: EOs were extracted from ...OBJECTIVE: To investigate on the cytotoxicity and penetration enhancement effect of essential oils(EOs) from warming the interior medicinals(WIM)from Traditional Chinese Medicine(TCM).METHODS: EOs were extracted from WIM of Bichengqie(Litseae Fructus), Dingxiang(Flos Syzygii Aromatici), Huajiao(Pericorpium Zanthoxyli Bungeani), and Xiaohuixiang(Fructus Foeniculi) with warm nature, and Ganjiang(Rhizoma Zingiberis),Gaoliangjiang(Rhizoma Alpinioe Officinari), Rougui(Cortex Cinnamomi Cassioe), and Wuzhuyu(Fructus Evodiae Rutoecorpae) with hot nature; respectively.Their chemical compositions were analyzed by gas chromatography-mass spectrometry(GC-MS). The cytotoxicity of the extracted eight EOs on HaCaT cells was measured and compared. Moreover, analyses of cell cycle and cell apoptosis were performed to investigate the cytotoxic mechanism.The transdermal penetration enhancement effects of the extracted eight EOs on ibuprofen were further compared by the modified Franz diffusion cell method.RESULTS: The most abundant constituents in the extracted eight EOs were determined to be monoterpenes, especially oxygen containing monoterpenes.The HaCaT cell cytotoxicity of EOs from WIM with hot nature were significantly(P = 0.020) higher than that with warm nature. Both ginger oil and zanthoxylum oil significantly induced G0/G1 phase arrestment in HaCaT cell cycle. For ginger oil from WIM with hot nature and zanthoxylum oil from WIM with warm nature, the main mechanisms of the cytotoxicity were found to be the induction of cellular necrosis and the cellular apoptosis, respectively. Furthermore, most of the tested EOs showed remarkable penetration enhancement activity on ibuprofen. However, no statistical significance(P =0.18) was found between penetration enhancement activity of EOs from WIM with warm nature and EOs from WIM with hot nature.CONCLUSION: With the enhanced penetration activity, the extracted EOs from the WIM demonstrated their significant effect of the cytotoxicity on the skin cells.展开更多
Transdermal drug delivery plays a significant part in the drug delivery system when compared to other routes of drug administration.The function of the stratum corneum(SC)is a barrier.Recently,numerous methods have be...Transdermal drug delivery plays a significant part in the drug delivery system when compared to other routes of drug administration.The function of the stratum corneum(SC)is a barrier.Recently,numerous methods have been thrived to improve the perforation of drugs across the skin.The most effective method is to use enhancers since these agents enhance skin permeability.Natural penetration enhancers like essential oils demonstrate higher enhancement activity and are more widely accepted than synthetic penetration enhancers.High potential in the expansion and interaction with the SC intercellular lipids has led to an increasing interest in these oils as penetration enhancers.This article gives an overview of a few essential oils,including their mode of action and important parameters for permeation improvement.The present work can provide essential oils as alternative enhancers,and this could be useful in transdermal administration.展开更多
基金funding supports from the National Natural Science Foundation of China(82003721,82071193,32170774 and 32000673)Shenzhen Science and Technology Innovation Commission(JCYJ20210324114014039,China)+1 种基金China Postdoctoral Science Foundation(2020M683182)Guangdong Basic and Applied Basic Research Foundation(2020A1515110549,China)。
文摘Alzheimer’s disease(AD),the most common neurodegenerative disorder,is characterized by memory loss and cognitive dysfunction.The accumulation of misfolded protein aggregates including amyloid beta(Aβ)peptides and microtubule associated protein tau(MAPT/tau)in neuronal cells are hallmarks of AD.So far,the exact underlying mechanisms for the aetiologies of AD have not been fully understood and the effective treatment for AD is limited.Autophagy is an evolutionarily conserved cellular catabolic process by which damaged cellular organelles and protein aggregates are degraded via lysosomes.Recently,there is accumulating evidence linking the impairment of the autophagy-lysosomal pathway with AD pathogenesis.Interestingly,the enhancement of autophagy to remove protein aggregates has been proposed as a promising therapeutic strategy for AD.Here,we first summarize the recent genetic,pathological and experimental studies regarding the impairment of the autophagy-lysosomal pathway in AD.We then describe the interplay between the autophagy-lysosomal pathway and two pathological proteins,Aβand MAPT/tau,in AD.Finally,we discuss potential therapeutic strategies and small molecules that target the autophagy-lysosomal pathway for AD treatment both in animal models and in clinical trials.Overall,this article highlights the pivotal functions of the autophagy-lysosomal pathway in AD pathogenesis and potential druggable targets in the autophagy-lysosomal pathway for AD treatment.
基金supported by China Pharmaceutical University Training Programs of Innovation for Undergraduates(No.02640390)
文摘AIM: To investigate the absorption characteristics of the total alkaloids from Mahoniae Caulis(TAMC) through the administration of monterpene absorption enhancers or protein inhibitors. METHOD: The absorption behavior was investigated in an in situ single-pass intestinal perfusion(SPIP) assay in rats. RESULTS: The intestinal absorption of TAMC was much more than that of a single compound or a mixture of compounds(jatrorrhizine, palmatine, and berberine). Promotion of absorption by the bicyclic monoterpenoids(borneol or camphor) was higher than by the monocyclic monoterpenes(menthol or menthone), and promotion by compounds with a hydroxyl group(borneol or menthol) was higher than those with a carbonyl group(camphor or menthone). The apparent permeability coefficient(Papp) of TAMC was increased to 1.8-fold by verapamil, while it was reduced to one half by thiamine. The absorption rate constant(Ka) and Papp of TAMC were unchanged by probenecid and pantoprazole. CONCLUSION: The intestinal absorption characteristics of TAMC might be passive transport, and the intestinum tenue was the best absorptive site. In addition, TAMC might be likely a substrate of P-glycoprotein(P-gp) and organic cation transporters(OCT), rather than multidrug resistance protein(MRP) and breast cancer resistance protein(BCRP). Compared with a single compound and a mixture of compounds, TAMC was able to be absorbed in the blood circulation effectively.
文摘Bone graft substitutes are widely used in the field of orthopedics and are extensively used to promote vertebral fusion. Fusion is the most common technique in spine surgery and is used to treat morbidities and relieve discomfort. Allograft and autograft bone substitutes are currently the most commonly used bone grafts to promote fusion. These approaches pose limitations and present complications to the patient. Numerous alternative bone graft substitutes are on the market or have been developed and proposed for application. These options have attempted to promote spine fusion by enhancing osteogenic properties. In this review, we reviewed biology of spine fusion and the current advances in biomedical materials and biological strategies for application in surgical spine fusion. Our findings illustrate that, while many bone graft substitutes perform well as bone graft extenders, only osteoinductive proteins(recombinant bone morphogenetic proteins-2 and osteogenic protein-1) provide evidence for use as both bone enhancers and bone substitutes for specific types of spinal fusion. Tissue engineered hydrogels, synthetic polymer composites and viral based gene therapy also holds the potential to be used for spine fusion in future, though warrants further investigation to be used in clinical practice.
文摘The transdermal drug delivery(TDD) shows considerable advantages over other administration pathways.However, conventional enhancing permeation methods face a series of challenges owing to barrier function provided by the skin, of which enhancing abilities either are so strong that it results in toxicity and irritation, or too weak to achieve desirable therapeutical effects. To address these issues, it is an urgent need to develop a novel method to overcome the limitations of current measures. Fortunately, in the preceding decades, ionic liquids(ILs) have been extensively studied and increasingly applied in pharmaceutical drug delivery due to their unique physicochemical and biological properties. What is more, tunability of structure resolves the challenges in processing active pharmaceutical ingredient(API) formulation, such as polymorphism and poor solubility of drugs. Thus, the presence of ILs provides an ample design space for the transdermal drug delivery system(TDDS). This review discusses the shortcomings of conventional enhancing permeation methods and introduces the application of ILs in transdermal delivery from three aspects: i) ILs are applied as enhancers to weaken the barrier function of the stratum corneum(SC). ii) As counterions, ILs are combined with API to modify the physicochemical properties of drugs. iii) ILs assist in the design of transdermal preparation for perfecting formulation. This review comprehensively introduces the major breakthroughs made in the applications of ILs, which can serve as guidance to provide novel ideas for formulation scientists who hit the bottleneck in the development of TDD.
基金National Science Foundation of China(82174093)Fundamental Research Funds for the Central Universities(BUCM-2019-JYB-JS-016).
文摘Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as penetration enhancers.Methods In this study;210 different structural types of VOCs were selected from the VOCMM penetration enhancer database;and the molecular docking experiments were conducted with three main lipid molecules of skin:ceramide 2(CER2);cholesterol(CHL);and free fatty acid(FFA).Each VOC was docked individually with each lipid molecule.Cluster analysis was used to explore the relationship between the binding energy of VOCs and their molecular struc-tures.Nine specific pathogen-free(SPF)Sprague Dawley(SD)rats were randomly divided in-to Control;Nootkatone;and 3-Butylidenephthalide groups for in vitro percutaneous experi-ments;with three rats in each group.The donor pool solutions were 3%gastrodin;3%gas-trodin+3%nootkatone;and 3%gastrodin+3%3-butylidenephthalide;respectively.The pen-etration enhancing effects of VOCs with higher binding energy were evaluated by comparing the 12-hour cumulative percutaneous absorption of gastrodin(Q12;µg/cm²).Results(i)Most of the VOCs were non-hydrogen bonded to the hydrophobic parts of CHL and FFA;and hydrogen bonded to the head group of CER2.Among them;sesquiterpene ox-ides showed the most pronounced binding affinity to CER2.The VOCs with 2-4 rings(in-cluding carbon rings;benzene rings;and heterocycles)demonstrated stronger binding affini-ty for three skin lipid molecules compared with the VOCs without intramolecular rings(P<0.01).(ii)According to the cluster analysis;most of the VOCs that bond well to CER2 had 2-3 intramolecular rings.The non-oxygenated VOCs were bonded to CER2 in a hydrophobic manner.The oxygenated VOCs were mostly bonded to CER2 by hydrogen bonding.(iii)The results of Franz diffusion cell experiment showed that the Q12 of Control group was 260.60±25.09µg/cm2;and the transdermal absorption of gastrodin was significantly increased in N
基金supported by the National Natural Science Foundation of China(32100502)the Ministry of Agriculture of China(2016ZX08009003-006)Science&Technology Department of Yunnan Province(202102AE090039).
文摘Background:The pig is an economically important livestock species and is a widely applied large animal model in medical research.Enhancers are critical regulatory elements that have fundamental functions in evolution,development and disease.Genome-wide quantification of functional enhancers in the pig is needed.Results:We performed self-transcribing active regulatory region sequencing(STARR-seq)in the porcine kidney epithelial PK15 and testicular ST cell lines,and reliably identified 2576 functional enhancers.Most of these enhancers were located in repetitive sequences and were enriched within silent and lowly expressed genes.Enhancers poorly overlapped with chromatin accessibility regions and were highly enriched in chromatin with the repressive histone modification H3K9me3,which is different from predicted pig enhancers detected using ChIP-seq for H3K27ac or/and H3K4me1 modified histones.This suggests that most pig enhancers identified with STARR-seq are endogenously repressed at the chromatin level and may function during cell type-specific development or at specific developmental stages.Additionally,the PPP3CA gene is associated with the loin muscle area trait and the QKI gene is associated with alkaline phosphatase activity that may be regulated by distal functional enhancers.Conclusions:In summary,we generated the first functional enhancer map in PK15 and ST cells for the pig genome and highlight its potential roles in pig breeding.
基金supported by the Distinguished Professorship Program of Jiangsu Province to Y.Fthe National Natural Science Foundation of China(31770935,81641164,81600386,81471539,30801350)+2 种基金the Natural Science Foundation of Nantong University(14Z022)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX17_1933)Undergraduate Training Program for Innovation(201710304030Z)
文摘Enhancers and super-enhancers exert indispensable roles in maintaining cell identity through spatiotemporally regulating gene transcription.Meanwhile,active enhancers and super-enhancers also produce transcripts termed enhancer RNAs(eRNAs) from their DNA elements.Although enhancers have been identified for more than 30 years,widespread transcription from enhancers are just discovered by genome-wide sequencing and considered as the key to understand longstanding questions in gene transcription.RNA-transcribed enhancers are marked by histone modifications such as H3K4m1/2 and H3K27Ac,and enriched with transcription regulatory factors such as LDTFs,P300,CBP,BRD4 and MED1.Those regulatory factors might constitute a Mega-Trans-like complex to potently activate enhancers.Compared to mRNAs,eRNAs are quite unstable and play roles at local.Functionally,it has been shown that e RNAs promote formation of enhancer-promoter loops.Several studies also demonstrated that eRNAs help the binding of RNA polymerase II(RNAPII) or transition of paused RNAPII by de-association of the negative elongation factor(NELF) complex.Nevertheless,these proposed mechanisms are not universally accepted and still under controversy.Here,we comprehensively summarize the reported findings and make perspectives for future exploration.We also believe that super-enhancer derived RNAs(seRNAs) might be informative to understand the nature of super-enhancers.
基金supported by the National Natural Science Foundation of China (Grant No. 31671308)the Ministry of Science and Technology of China (Grant No. 2016YFC0900300)
文摘MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs with regulatory functions. Traditionally, miRNAs are thought to play a negative regulatory role in the cytoplasm by binding to the YUTR of target genes to degrade mRNA or inhibit translation. However, it remains a challenge to interpret the potential function of many miRNAs located in the nucleus. Recently, we reported a new type of miRNAs present in the nucleus, which can activate gene expres- sion by binding to the enhancer, and named them nuclear activating miRNAs (NamiRNAs). The discovery of NamiRNAs showcases a complementary regulatory mechanism of miRNA, demon- strating their differential roles in the nucleus and cytoplasm. Here, we reviewed miRNAs in nucleus to better understand the function of NamiRNAs in their interactions with the enhancers. Accord- ingly, we propose a NamiRNA--enhancer-target gene activation network model to better under- stand the crosstalk between NamiRNAs and enhancers in regulating gene transcription. Moreover, we hypothesize that NamiRNAs may be involved in cell identity or cell fate determina- tion during development, although further study is needed to elucidate the underlying mechanisms in detail.
基金Supported by the Special Project of Jiangsu Provincial Administration of Traditional Chinese Medicine(No.ZX2016D,High Bioavailability Transdermal Preparation of Chinese Medicine Based on Characterization and Construction of Component Biopharmaceutics)Key Project of Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization(No.ZDXMHT-1-15,Prediction Model of Transdermal Absorption and Demonstrative Application for Complex Components System of Traditional Chinese Medicine)+1 种基金National Nature Science Foundation of China(No.81403116,Preparation and Mechanism Research of Effective Part of Traditional Chinese Medicine-Containing Complex Phospholipid Transfersomes with Thermosensitive and High Deformability)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘OBJECTIVE: To investigate on the cytotoxicity and penetration enhancement effect of essential oils(EOs) from warming the interior medicinals(WIM)from Traditional Chinese Medicine(TCM).METHODS: EOs were extracted from WIM of Bichengqie(Litseae Fructus), Dingxiang(Flos Syzygii Aromatici), Huajiao(Pericorpium Zanthoxyli Bungeani), and Xiaohuixiang(Fructus Foeniculi) with warm nature, and Ganjiang(Rhizoma Zingiberis),Gaoliangjiang(Rhizoma Alpinioe Officinari), Rougui(Cortex Cinnamomi Cassioe), and Wuzhuyu(Fructus Evodiae Rutoecorpae) with hot nature; respectively.Their chemical compositions were analyzed by gas chromatography-mass spectrometry(GC-MS). The cytotoxicity of the extracted eight EOs on HaCaT cells was measured and compared. Moreover, analyses of cell cycle and cell apoptosis were performed to investigate the cytotoxic mechanism.The transdermal penetration enhancement effects of the extracted eight EOs on ibuprofen were further compared by the modified Franz diffusion cell method.RESULTS: The most abundant constituents in the extracted eight EOs were determined to be monoterpenes, especially oxygen containing monoterpenes.The HaCaT cell cytotoxicity of EOs from WIM with hot nature were significantly(P = 0.020) higher than that with warm nature. Both ginger oil and zanthoxylum oil significantly induced G0/G1 phase arrestment in HaCaT cell cycle. For ginger oil from WIM with hot nature and zanthoxylum oil from WIM with warm nature, the main mechanisms of the cytotoxicity were found to be the induction of cellular necrosis and the cellular apoptosis, respectively. Furthermore, most of the tested EOs showed remarkable penetration enhancement activity on ibuprofen. However, no statistical significance(P =0.18) was found between penetration enhancement activity of EOs from WIM with warm nature and EOs from WIM with hot nature.CONCLUSION: With the enhanced penetration activity, the extracted EOs from the WIM demonstrated their significant effect of the cytotoxicity on the skin cells.
文摘Transdermal drug delivery plays a significant part in the drug delivery system when compared to other routes of drug administration.The function of the stratum corneum(SC)is a barrier.Recently,numerous methods have been thrived to improve the perforation of drugs across the skin.The most effective method is to use enhancers since these agents enhance skin permeability.Natural penetration enhancers like essential oils demonstrate higher enhancement activity and are more widely accepted than synthetic penetration enhancers.High potential in the expansion and interaction with the SC intercellular lipids has led to an increasing interest in these oils as penetration enhancers.This article gives an overview of a few essential oils,including their mode of action and important parameters for permeation improvement.The present work can provide essential oils as alternative enhancers,and this could be useful in transdermal administration.