Transforming growth factor-β (TGF-β) signaling is tightly regulated to ensure its proper physiological functions in different cells and tissues. Like other cell surface receptors, TGF-β receptors are internalized...Transforming growth factor-β (TGF-β) signaling is tightly regulated to ensure its proper physiological functions in different cells and tissues. Like other cell surface receptors, TGF-β receptors are internalized into the cell, and this process plays an important regulatory role in TGF-β signaling. It is well documented that TGF-β receptors are endocytosed via clathrin-coated vesicles as TGF-β endocytosis can be blocked by potassium depletion and the GTPasedeficient dynamin K44A mutant. TGF-β receptors may also enter cells via cholesterol-rich membrane microdomain lipid rafts/caveolae and are found in caveolin-l-positive vesicles. Although receptor endocytosis is not essential for TGF-β signaling, clathrin-mediated endocytosis has been shown to promote TGF-β-induced Smad activation and transcriptional responses. Lipid rafts/caveolae are widely regarded as signaling centers for G protein-coupled recep- tors and tyrosine kinase receptors, but they are indicated to facilitate the degradation of TGF-β receptors and there- fore turnoff of TGF-β signaling. This review summarizes current understanding of TGF-β receptor endocytosis, the possible mechanisms underlying this process, and the role of endocytosis in modulation of TGF-β signaling.展开更多
The endoplasmic reticulum(ER),which is composed of a continuous network of tubules and sheets,forms the most widely distributed membrane system in eukaryotic cells.As a result,it engages a variety of organelles by est...The endoplasmic reticulum(ER),which is composed of a continuous network of tubules and sheets,forms the most widely distributed membrane system in eukaryotic cells.As a result,it engages a variety of organelles by establishing membrane contact sites(MCSs).These contacts regulate organelle positioning and remodeling,including fusion and fission,facilitate precise lipid exchange,and couple vital signaling events.Here,we systematically review recent advances and converging themes on ER-involved organellar contact.The molecular basis,cellular influence,and potential physiological functions for ER/nuclear envelope contacts with mitochondria,Golgi,endosomes,lysosomes,lipid droplets,autophagosomes,and plasma membrane are summarized.展开更多
G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice,but how these pathways are coordinated in regulating this process is unknown.Here,we show that Chang Li Geng 1(CLG...G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice,but how these pathways are coordinated in regulating this process is unknown.Here,we show that Chang Li Geng 1(CLG1),which encodes an E3 ligase,regulates grain size by targeting the Gγprotein GS3,a negative regulator of grain length,for degradation.Overexpression of CLG1 led to increased grain length,while overexpression of mutated CLG1 with changes in three conserved amino acids decreased grain length.We found that CLG1 physically interacts with and ubiquitinats GS3which is subsequently degraded through the endosome degradation pathway,leading to increased grain size.Furthermore,we identified a critical SNP in the exon 3 of CLG1 that is significantly associated with grain size variation in a core collection of cultivated rice.This SNP results in an amino acid substitution from Arg to Ser at position 163 of CLG1 that enhances the E3 ligase activity of CLG1 and thus increases rice grain size.Both the expression level of CLG1 and the SNP CLG1163S may be useful variations for manipulating grain size in rice.展开更多
Nanomaterials with multiple functions have become more and more popular in the domain of cancer research. MoS2 has a great potential in photothermal therapy, X-ray/CT imaging and drug delivery. In this study, a water ...Nanomaterials with multiple functions have become more and more popular in the domain of cancer research. MoS2 has a great potential in photothermal therapy, X-ray/CT imaging and drug delivery. In this study, a water soluble MoS2 nanosystem(MoS2-PEG) was synthesized and explored in drug delivery, photothermal therapy(PTT) and X-ray imaging.Doxorubicin(DOX) was loaded onto MoS2-PEG with a high drug loading efficiency(~69%)and obtained a multifunctional drug delivery system(MoS2-PEG/DOX). As the drug delivery, MoS2-PEG/DOX could efficiently cross the cell membranes, and escape from the endosome via NIR light irradiation, lead to more apoptosis in MCF-7 cells, and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 11.6-fold higher DTX uptake of tumor than DOX. Besides, MoS2-PEG/DOX not only served as a drug delivery system, but also as a powerful PTT agent for thermal ablation of tumor and a strong X-ray contrast agent for tumor diagnosis. In the in vitro and in vivo studies, MoS2-PEG/DOX exhibited excellent tumor-targeting efficacy, outstanding synergistic anti-cancer effect of photothermal and chemotherapy and X-ray imaging property,demonstrating that MoS2-PEG/DOX had a great potential for simultaneous diagnosis and photothermal-chemotherapy in cancer treatment.展开更多
Influenza A virus(IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membran...Influenza A virus(IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membranes. In this study, we identified cation-dependent mannose-6-phosphate receptor(M6PR) as a crucial host factor for the replication of IAV. We found that siRNA knockdown of M6PR expression significantly reduced the growth titers of different subtypes of IAV, and that the inhibitory effect of M6PR siRNA treatment on IAV growth was overcome by the complement of exogenously expressed M6PR. When A549 cells were treated with siRNA targeting M6PR,the nuclear accumulation of viral nucleoprotein(NP) was dramatically inhibited at early timepoints post-infection, indicating that M6PR engages in the early stage of the IAV replication cycle. By investigating the role of M6PR in the individual entry and post-entry steps of IAV replication, we found that the downregulation of M6PR expression had no effect on attachment, internalization, early endosome trafficking,or late endosome acidification. However, we found that M6PR expression was critical for the fusion of viral envelope and late endosomal membranes. Of note, M6PR interacted with the hemagglutinin(HA) protein of IAV, and further studies showed that the lumenal domain of M6PR and the ectodomain of HA2 mediated the interaction and directly promoted the fusion of the viral and late endosomal membranes,thereby facilitating IAV replication. Together, our findings highlight the importance of the M6PR–HA interaction in the fusion of viral and late endosomal membranes during IAV replication.展开更多
Foot-and-mouth disease(FMD)is a highly contagious and economically important disease,which is caused by the FMD virus(FMDV).Although the cell receptor for FMDV has been identified,the specific mechanism of FMDV intern...Foot-and-mouth disease(FMD)is a highly contagious and economically important disease,which is caused by the FMD virus(FMDV).Although the cell receptor for FMDV has been identified,the specific mechanism of FMDV internalization after infection remains unknown.In this study,we found that kinesin family member 5B(KIF5B)plays a vital role during FMDV internalization.Moreover,we confirmed the interaction between KIF5B and FMDV structural protein VP1 by co-immunoprecipitation(Co-IP)and co-localization in FMDV-infected cells.In particular,the stalk[amino acids(aa)413–678]domain of KIF5B was indispensable for KIF5B-VP1 interaction.Moreover,overexpression of KIF5B dramatically enhanced FMDV replication;consistently,knockdown or knockout of KIF5B suppressed FMDV replication.Furthermore,we also demonstrated that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating.KIF5B also promotes the transmission of viral particles to early and late endosomes during the early stages of infection.In conclusion,our results demonstrate that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating and intracellular transport.This study may provide a new therapeutic target for developing FMDV antiviral drugs.展开更多
Messenger RNA(mRNA)is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases,including viral infection and cancer.Especially,mRNA-based vaccines,as a new type ...Messenger RNA(mRNA)is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases,including viral infection and cancer.Especially,mRNA-based vaccines,as a new type of vaccine,have played a leading role in fighting against the current global pandemic of COVID-19.However,the inherent drawbacks,including large size,negative charge,and instability,hinder its use as a therapeutic agent.Lipid carriers are distinguishable and promising vehicles for mRNA delivery,owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time.Here,we first summarized the structure and properties of different lipid carriers,such as liposomes,liposome-like nanoparticles,solid lipid nanoparticles,lipid-polymer hybrid nanoparticles,nanoemulsions,exosomes and lipoprotein particles,and their applications in delivering mRNA.Then,the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted.Recent advancements in the mRNA vaccine of COVID-19 were emphasized.Finally,we described our future vision and perspectives in this field.展开更多
Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life.Here,we summarize emerging links between the most common ...Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life.Here,we summarize emerging links between the most common late life neurodegenerative disease,Alzheimer’s disease,and the most common early life neurodegenerative diseases,neuronal ceroid lipofuscinoses.Genetic studies reported an overlap of clinically diagnosed Alzheimer’s disease and mutations in genes known to cause neuronal ceroid lipofuscinoses.Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders.This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases.A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts,the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations.Here,we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer’s disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.展开更多
Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1(AUX1/LAX) influx carriers and PIN-FORMED(PIN) efflux carriers,mediates various processes of plant growth and...Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1(AUX1/LAX) influx carriers and PIN-FORMED(PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate(ADP)ribosylation factor(ARF)-GTPase exchange factor protein,GNOM.However,the mediation of auxin influx carrier recycling is poorly understood.Here,we report that overexpression of OsAGAP,an ARF-GTPase-activating protein in rice,stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1.AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption.Furthermore,OsAGAP is involved in actin cytoskeletal organization,and its overexpression tends to reduce the thickness and bundling of actin filaments.Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells,and was only slightly promoted when the actin filaments were completely disrupted by Lat B.Thus,we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.展开更多
Extracellular vesicles(EVs)have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size,biocompatibility,and high stability.Herein,we demonstrate ora...Extracellular vesicles(EVs)have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size,biocompatibility,and high stability.Herein,we demonstrate orange-derived extracellular vesicles(OEV)nanodrugs(DN@OEV)by modifying cRGD-targeted doxorubicin(DOX)nanoparticles(DN)onto the surface of OEV,enabling significantly enhancing tumor accumulation and penetration,thereby efficiently inhibiting the growth of ovarian cancer.The obtained DN@OEV enabled to inducement of greater transcytosis capability in ovarian cancer cells,which presented the average above 10-fold transcytosis effect compared with individual DN.It was found that DN@OEV could trigger receptor-mediated endocytosis to promote early endosome/recycling endosomes pathway for exocytosis and simultaneously reduce degradation in the early endosomes-late endosomes-lysosome pathway,thereby inducing the enhanced transcytosis.In particular,the zombie mouse model bearing orthotopic ovarian cancer further validated DN@OEV presented high accumulation and penetration in tumor tissue by the transcytosis process.Our study indicated the strategy in enhancing transcytosis has significant implications for improving the therapeutic efficacy of thedrugdelivery system.展开更多
Plant sensitive factor attachment protein receptors (SNAREs) encoded by genes of the same sub-family are generally considered as redundant in promoting vesicle-associated membrane fusion events. Nonetheless, the app...Plant sensitive factor attachment protein receptors (SNAREs) encoded by genes of the same sub-family are generally considered as redundant in promoting vesicle-associated membrane fusion events. Nonetheless, the application of innovative experimental approaches highlighted that members of the same gene sub-family often have different functional specificities. In this work, two closely related Qc-SNAREs--the AtSYP51 and the AtSYP52--are compared in their ability to influence different secretory pathways. Their role in the vesicle sorting to the central vacuole has been revised and they were found to have a novel inhibitory function. When transiently overexpressed, the SYP51 and the SYP52 distributed between the TGN and the tonoplast. Our data demonstrate that these SYPs (syntaxin of plants) act as t-SNARE when present on the membrane of TGN/PVC, whereas they behave as inhibitory or interfering SNAREs (i-SNAREs) when they accumulate on the tonoplast. Moreover, the performed functional analysis indicated that the AtSYP51 and the AtSYP52 roles differ in the traffic to the vacuole. The findings are a novel contribution to the functional characterization of plant SNAREs that reveals additional non-fusogenic roles.展开更多
To further enhance the transfection efficiency of a micelleplex system based on monomethoxy poly(ethylene glycol)-block-poly(e-caprolactone)-block-poly(L-lysine) (MPEG-b-PCL-b-PLL), cholesterol (Chol) moieti...To further enhance the transfection efficiency of a micelleplex system based on monomethoxy poly(ethylene glycol)-block-poly(e-caprolactone)-block-poly(L-lysine) (MPEG-b-PCL-b-PLL), cholesterol (Chol) moieties are attached to the e-termini of PLL segments to obtain MPEG-b-PCL-b-PLL/Chol. The structure and morphology of the copolymer are studied by IH-NMR, TEM and DLS (dynamic light scattering). The cytotoxicity, cell uptake, endosomal release and mRNA knockdown are studied by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, flow cytometry, CLSM (confocal laser scanning microscopy) and RT-PCR (real-time polymerase chain reaction). The results show that compared to their precursor MPEG-b-PCL-b-PLL, the cholesterol-grafted copolymer shows significantly lower toxicity, more rapid cellular endocytosis and endosome escape, and consequently displays enhanced siRNA transfection efficiency even at a lower N/P ratio. These improvements are ascribed to enhanced interaction of the cholesterol moieties with both cellular membrane and endosomal membrane. Moreover, effect of the PLL block length is examined. The final conclusion is that long enough PLL segments and incorporation of proper fraction of cholesterol onto the PLL segments benefit the enhancement of siRNA transfection efficiency.展开更多
Retromer is an evolutionarily conserved multimeric protein complex that mediates intracellular transport of various vesicular cargoes and functions in a wide variety of cellular processes including polarized trafficki...Retromer is an evolutionarily conserved multimeric protein complex that mediates intracellular transport of various vesicular cargoes and functions in a wide variety of cellular processes including polarized trafficking,developmental signaling and lysosome biogenesis.Through its interaction with the Rab GTPases and their effectors,membrane lipids,molecular motors,the endocytic machinery and actin nucleation promoting factors,retromer regulates sorting and trafficking of transmembrane proteins from endosomes to the trans-Golgi network(TGN) and the plasma membrane.In this review.I highlight recent progress in the understanding of relromer-medialed protein sorting and vesicle trafficking and discuss how retromer contributes to a diverse set of developmental,physiological and pathological processes.展开更多
The short half-lives due to the enzymatic degradation in blood, the lack of tissue targetability and the incapability to passively diffuse across the plasma membrane and smoothly traffic across the harsh intracelluar ...The short half-lives due to the enzymatic degradation in blood, the lack of tissue targetability and the incapability to passively diffuse across the plasma membrane and smoothly traffic across the harsh intracelluar environment are the major shortcomings for nucleic acid-based potential therapeutics, such as recombinant plasmid and antisense oligonucleotides or small interferring RNA (siRNA). Plasmid DNA containing a gene of interest could have immense impact as a promising therapeutic drug for treating genetic as well as acquired human diseases at the molecular level with high level of efficacy and precision. Thus both viral and non-viral synthetic vectors have been developed in the past decades to address the aforementioned challenges of naked DNA. While in the viral particles plasmid DNA is integrated into the viral genome, in most non-viral cases the DNA being anionic in nature is electrostatically associated with a cationic lipid or polymer forming lipoplex or polyplex, respectively, or a cationized inorganic gold, silica or iron oxide particle. Due to the potential immunogenicity and carcinogenicity issues with the viral particles, non-viral vectors have drawn much more attention for the clinical evaluation. However, the main concern of using non-biodegradable particles, specially the inorganic ones, is the adverse effects owing to their long term interactions with body components. We have recently developed biodegradable pH-sensitive inorganic nanoparticles of Mg/CaPi and carbonate apatite for efficient transgene delivery to primary, cancer and embryonic stem cells, by virtue of their high affinity binding with the DNA, ability to contact the cell membrane by ionic or ligand-receptor interactions and fast dissolution kinectis in endosomal acidic pH facilitating release of the DNA from the dissolving particles and also from the endosomes.展开更多
基金The work in Ye-Guang Chen's laboratory is supported by grants from the National Natural Science Foundation of China (30430360, 30671033) and the Ministry of Sciences and Technology of China 973 Program (2004CB720002, 2006CB943401, 2006CB910102) and 863 Program (2006AA02Z 172).
文摘Transforming growth factor-β (TGF-β) signaling is tightly regulated to ensure its proper physiological functions in different cells and tissues. Like other cell surface receptors, TGF-β receptors are internalized into the cell, and this process plays an important regulatory role in TGF-β signaling. It is well documented that TGF-β receptors are endocytosed via clathrin-coated vesicles as TGF-β endocytosis can be blocked by potassium depletion and the GTPasedeficient dynamin K44A mutant. TGF-β receptors may also enter cells via cholesterol-rich membrane microdomain lipid rafts/caveolae and are found in caveolin-l-positive vesicles. Although receptor endocytosis is not essential for TGF-β signaling, clathrin-mediated endocytosis has been shown to promote TGF-β-induced Smad activation and transcriptional responses. Lipid rafts/caveolae are widely regarded as signaling centers for G protein-coupled recep- tors and tyrosine kinase receptors, but they are indicated to facilitate the degradation of TGF-β receptors and there- fore turnoff of TGF-β signaling. This review summarizes current understanding of TGF-β receptor endocytosis, the possible mechanisms underlying this process, and the role of endocytosis in modulation of TGF-β signaling.
基金supported by the National Natural Science Foundation of China(92254305)supported by the National Natural Science Foundation of China(92254305,91854204,32130026)+20 种基金supported by National Natural Science Foundation of China(92254302,32225013,32130023)supported by the National Natural Science Foundation of China(91954201,31971289)supported by grants from the National Natural Science Foundation of China(91954207)supported by the National Natural Science Foundation of China(32170753)supported by the National Natural Science Foundation of China(32170692,92154001)supported by grants from the National Natural Science Foundation of China(92254303,32170701)supported by grants from the National Natural Science Foundation of China(32101000,32271273)the Strategic Priority Research Program(XDB39000000)Project for Young Scientists in Basic Research(YSBR-075)of the Chinese Academy of Sciencesthe National Key Research and Development Program of China(2021YFA1300800)National Key Research and Development Program of China(2021YFA0804802,2019YFA0508602)Beijing Natural Science Foundation(JQ20028)New Cornerstone Science Foundation(Xplorer Prize)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB37020304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB37040402)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24030205)the National Key Research and Development Program of China(2021YFA1300301)the National Key Research and Development Program of China(2018YFA0506902)the Fundamental Research Funds for the Central Universities(63213104,63223043)the Talent Training Project at Nankai University(035-BB042112)supported by the Beijing Municipal Science&Technology Commission(5202022)。
文摘The endoplasmic reticulum(ER),which is composed of a continuous network of tubules and sheets,forms the most widely distributed membrane system in eukaryotic cells.As a result,it engages a variety of organelles by establishing membrane contact sites(MCSs).These contacts regulate organelle positioning and remodeling,including fusion and fission,facilitate precise lipid exchange,and couple vital signaling events.Here,we systematically review recent advances and converging themes on ER-involved organellar contact.The molecular basis,cellular influence,and potential physiological functions for ER/nuclear envelope contacts with mitochondria,Golgi,endosomes,lysosomes,lipid droplets,autophagosomes,and plasma membrane are summarized.
基金This work was supported by grants from the National Key Research and Development Program(2016YFD0100901 and 2016YFD0100903)the Earmarked Fund for the China Agricultural Research System(CARS-01-05).
文摘G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice,but how these pathways are coordinated in regulating this process is unknown.Here,we show that Chang Li Geng 1(CLG1),which encodes an E3 ligase,regulates grain size by targeting the Gγprotein GS3,a negative regulator of grain length,for degradation.Overexpression of CLG1 led to increased grain length,while overexpression of mutated CLG1 with changes in three conserved amino acids decreased grain length.We found that CLG1 physically interacts with and ubiquitinats GS3which is subsequently degraded through the endosome degradation pathway,leading to increased grain size.Furthermore,we identified a critical SNP in the exon 3 of CLG1 that is significantly associated with grain size variation in a core collection of cultivated rice.This SNP results in an amino acid substitution from Arg to Ser at position 163 of CLG1 that enhances the E3 ligase activity of CLG1 and thus increases rice grain size.Both the expression level of CLG1 and the SNP CLG1163S may be useful variations for manipulating grain size in rice.
基金supported by grants from the National Natural Science Foundation of China(Nos.81273451,81302717 and81101684)
文摘Nanomaterials with multiple functions have become more and more popular in the domain of cancer research. MoS2 has a great potential in photothermal therapy, X-ray/CT imaging and drug delivery. In this study, a water soluble MoS2 nanosystem(MoS2-PEG) was synthesized and explored in drug delivery, photothermal therapy(PTT) and X-ray imaging.Doxorubicin(DOX) was loaded onto MoS2-PEG with a high drug loading efficiency(~69%)and obtained a multifunctional drug delivery system(MoS2-PEG/DOX). As the drug delivery, MoS2-PEG/DOX could efficiently cross the cell membranes, and escape from the endosome via NIR light irradiation, lead to more apoptosis in MCF-7 cells, and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 11.6-fold higher DTX uptake of tumor than DOX. Besides, MoS2-PEG/DOX not only served as a drug delivery system, but also as a powerful PTT agent for thermal ablation of tumor and a strong X-ray contrast agent for tumor diagnosis. In the in vitro and in vivo studies, MoS2-PEG/DOX exhibited excellent tumor-targeting efficacy, outstanding synergistic anti-cancer effect of photothermal and chemotherapy and X-ray imaging property,demonstrating that MoS2-PEG/DOX had a great potential for simultaneous diagnosis and photothermal-chemotherapy in cancer treatment.
基金supported by the National Natural Science Foundation of China(32192453,32172847)the National Key Research and Development Program of China(2021YFD1800204)+1 种基金the Laboratory of Lingnan Modern Agriculture Project(NT2021007)the earmarked fund for CARS-41。
文摘Influenza A virus(IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membranes. In this study, we identified cation-dependent mannose-6-phosphate receptor(M6PR) as a crucial host factor for the replication of IAV. We found that siRNA knockdown of M6PR expression significantly reduced the growth titers of different subtypes of IAV, and that the inhibitory effect of M6PR siRNA treatment on IAV growth was overcome by the complement of exogenously expressed M6PR. When A549 cells were treated with siRNA targeting M6PR,the nuclear accumulation of viral nucleoprotein(NP) was dramatically inhibited at early timepoints post-infection, indicating that M6PR engages in the early stage of the IAV replication cycle. By investigating the role of M6PR in the individual entry and post-entry steps of IAV replication, we found that the downregulation of M6PR expression had no effect on attachment, internalization, early endosome trafficking,or late endosome acidification. However, we found that M6PR expression was critical for the fusion of viral envelope and late endosomal membranes. Of note, M6PR interacted with the hemagglutinin(HA) protein of IAV, and further studies showed that the lumenal domain of M6PR and the ectodomain of HA2 mediated the interaction and directly promoted the fusion of the viral and late endosomal membranes,thereby facilitating IAV replication. Together, our findings highlight the importance of the M6PR–HA interaction in the fusion of viral and late endosomal membranes during IAV replication.
基金supported by the National Natural Sciences Foundation of China(No.32102639 and 32072831)the National Key Research and Development Program of China(No.2021YFD1800300)+5 种基金the Gansu Science Foundation for Distinguished Young Scholars(No.21JR7RA026)the Earmarked Fund for CARS-35,the Strategic Priority Research Program of the National Center of Technology Innovation for Pigs(No.NCTIP-XD/C03)the Science and Technology Major Project of Gansu Province(No.22ZD6NA001)the Natural Science Foundation of Gansu Province(No.22JR5RA034 and 23JRRA549)the open competition program of top ten critical priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province(No.2023SDZG02)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-ey20).
文摘Foot-and-mouth disease(FMD)is a highly contagious and economically important disease,which is caused by the FMD virus(FMDV).Although the cell receptor for FMDV has been identified,the specific mechanism of FMDV internalization after infection remains unknown.In this study,we found that kinesin family member 5B(KIF5B)plays a vital role during FMDV internalization.Moreover,we confirmed the interaction between KIF5B and FMDV structural protein VP1 by co-immunoprecipitation(Co-IP)and co-localization in FMDV-infected cells.In particular,the stalk[amino acids(aa)413–678]domain of KIF5B was indispensable for KIF5B-VP1 interaction.Moreover,overexpression of KIF5B dramatically enhanced FMDV replication;consistently,knockdown or knockout of KIF5B suppressed FMDV replication.Furthermore,we also demonstrated that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating.KIF5B also promotes the transmission of viral particles to early and late endosomes during the early stages of infection.In conclusion,our results demonstrate that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating and intracellular transport.This study may provide a new therapeutic target for developing FMDV antiviral drugs.
基金supported by the National Natural Science Foundation of China(Nos.81872823,82073782)the Double First-Class(CPU2018PZQ13,China)of the CPU+2 种基金the Shanghai Science and Technology Committee(19430741500,China)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJA320003)the Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education of Jiangxi University of Traditional Chinese Medicine(zdsys-202103)。
文摘Messenger RNA(mRNA)is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases,including viral infection and cancer.Especially,mRNA-based vaccines,as a new type of vaccine,have played a leading role in fighting against the current global pandemic of COVID-19.However,the inherent drawbacks,including large size,negative charge,and instability,hinder its use as a therapeutic agent.Lipid carriers are distinguishable and promising vehicles for mRNA delivery,owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time.Here,we first summarized the structure and properties of different lipid carriers,such as liposomes,liposome-like nanoparticles,solid lipid nanoparticles,lipid-polymer hybrid nanoparticles,nanoemulsions,exosomes and lipoprotein particles,and their applications in delivering mRNA.Then,the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted.Recent advancements in the mRNA vaccine of COVID-19 were emphasized.Finally,we described our future vision and perspectives in this field.
基金supported by the Deutsche Forschungsgemeinschaft(DFG,425373668,HE 3220/4-1)(to GH).
文摘Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life.Here,we summarize emerging links between the most common late life neurodegenerative disease,Alzheimer’s disease,and the most common early life neurodegenerative diseases,neuronal ceroid lipofuscinoses.Genetic studies reported an overlap of clinically diagnosed Alzheimer’s disease and mutations in genes known to cause neuronal ceroid lipofuscinoses.Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders.This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases.A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts,the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations.Here,we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer’s disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.
基金supported by the Innovative Program of the Chinese Academy of Sciences (KSCX2-YW-N-041)the National Natural Science Foundation of China(30670197)
文摘Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1(AUX1/LAX) influx carriers and PIN-FORMED(PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate(ADP)ribosylation factor(ARF)-GTPase exchange factor protein,GNOM.However,the mediation of auxin influx carrier recycling is poorly understood.Here,we report that overexpression of OsAGAP,an ARF-GTPase-activating protein in rice,stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1.AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption.Furthermore,OsAGAP is involved in actin cytoskeletal organization,and its overexpression tends to reduce the thickness and bundling of actin filaments.Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells,and was only slightly promoted when the actin filaments were completely disrupted by Lat B.Thus,we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.
基金supported by the National Natural Science Foundation of China(22275080,22075127,and 82073340)the Natural Science Foundation of Guangdong Province(2022A 1515012044,China).
文摘Extracellular vesicles(EVs)have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size,biocompatibility,and high stability.Herein,we demonstrate orange-derived extracellular vesicles(OEV)nanodrugs(DN@OEV)by modifying cRGD-targeted doxorubicin(DOX)nanoparticles(DN)onto the surface of OEV,enabling significantly enhancing tumor accumulation and penetration,thereby efficiently inhibiting the growth of ovarian cancer.The obtained DN@OEV enabled to inducement of greater transcytosis capability in ovarian cancer cells,which presented the average above 10-fold transcytosis effect compared with individual DN.It was found that DN@OEV could trigger receptor-mediated endocytosis to promote early endosome/recycling endosomes pathway for exocytosis and simultaneously reduce degradation in the early endosomes-late endosomes-lysosome pathway,thereby inducing the enhanced transcytosis.In particular,the zombie mouse model bearing orthotopic ovarian cancer further validated DN@OEV presented high accumulation and penetration in tumor tissue by the transcytosis process.Our study indicated the strategy in enhancing transcytosis has significant implications for improving the therapeutic efficacy of thedrugdelivery system.
文摘Plant sensitive factor attachment protein receptors (SNAREs) encoded by genes of the same sub-family are generally considered as redundant in promoting vesicle-associated membrane fusion events. Nonetheless, the application of innovative experimental approaches highlighted that members of the same gene sub-family often have different functional specificities. In this work, two closely related Qc-SNAREs--the AtSYP51 and the AtSYP52--are compared in their ability to influence different secretory pathways. Their role in the vesicle sorting to the central vacuole has been revised and they were found to have a novel inhibitory function. When transiently overexpressed, the SYP51 and the SYP52 distributed between the TGN and the tonoplast. Our data demonstrate that these SYPs (syntaxin of plants) act as t-SNARE when present on the membrane of TGN/PVC, whereas they behave as inhibitory or interfering SNAREs (i-SNAREs) when they accumulate on the tonoplast. Moreover, the performed functional analysis indicated that the AtSYP51 and the AtSYP52 roles differ in the traffic to the vacuole. The findings are a novel contribution to the functional characterization of plant SNAREs that reveals additional non-fusogenic roles.
基金supported by the National Natural Science Foundation of China (No. 21004062)"100 Talents Program" of the Chinese Academy of Sciences (No. KGCX2-YW-802)the Ministry of Science and Technology ofChina ("973 Project", No. 2009CB930102)
文摘To further enhance the transfection efficiency of a micelleplex system based on monomethoxy poly(ethylene glycol)-block-poly(e-caprolactone)-block-poly(L-lysine) (MPEG-b-PCL-b-PLL), cholesterol (Chol) moieties are attached to the e-termini of PLL segments to obtain MPEG-b-PCL-b-PLL/Chol. The structure and morphology of the copolymer are studied by IH-NMR, TEM and DLS (dynamic light scattering). The cytotoxicity, cell uptake, endosomal release and mRNA knockdown are studied by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, flow cytometry, CLSM (confocal laser scanning microscopy) and RT-PCR (real-time polymerase chain reaction). The results show that compared to their precursor MPEG-b-PCL-b-PLL, the cholesterol-grafted copolymer shows significantly lower toxicity, more rapid cellular endocytosis and endosome escape, and consequently displays enhanced siRNA transfection efficiency even at a lower N/P ratio. These improvements are ascribed to enhanced interaction of the cholesterol moieties with both cellular membrane and endosomal membrane. Moreover, effect of the PLL block length is examined. The final conclusion is that long enough PLL segments and incorporation of proper fraction of cholesterol onto the PLL segments benefit the enhancement of siRNA transfection efficiency.
基金supported by the National Natural Science Foundation of China(Nos.31325017,31471334 and 31530039)the National Basic Research Program(No.2014CB942802)
文摘Retromer is an evolutionarily conserved multimeric protein complex that mediates intracellular transport of various vesicular cargoes and functions in a wide variety of cellular processes including polarized trafficking,developmental signaling and lysosome biogenesis.Through its interaction with the Rab GTPases and their effectors,membrane lipids,molecular motors,the endocytic machinery and actin nucleation promoting factors,retromer regulates sorting and trafficking of transmembrane proteins from endosomes to the trans-Golgi network(TGN) and the plasma membrane.In this review.I highlight recent progress in the understanding of relromer-medialed protein sorting and vesicle trafficking and discuss how retromer contributes to a diverse set of developmental,physiological and pathological processes.
文摘The short half-lives due to the enzymatic degradation in blood, the lack of tissue targetability and the incapability to passively diffuse across the plasma membrane and smoothly traffic across the harsh intracelluar environment are the major shortcomings for nucleic acid-based potential therapeutics, such as recombinant plasmid and antisense oligonucleotides or small interferring RNA (siRNA). Plasmid DNA containing a gene of interest could have immense impact as a promising therapeutic drug for treating genetic as well as acquired human diseases at the molecular level with high level of efficacy and precision. Thus both viral and non-viral synthetic vectors have been developed in the past decades to address the aforementioned challenges of naked DNA. While in the viral particles plasmid DNA is integrated into the viral genome, in most non-viral cases the DNA being anionic in nature is electrostatically associated with a cationic lipid or polymer forming lipoplex or polyplex, respectively, or a cationized inorganic gold, silica or iron oxide particle. Due to the potential immunogenicity and carcinogenicity issues with the viral particles, non-viral vectors have drawn much more attention for the clinical evaluation. However, the main concern of using non-biodegradable particles, specially the inorganic ones, is the adverse effects owing to their long term interactions with body components. We have recently developed biodegradable pH-sensitive inorganic nanoparticles of Mg/CaPi and carbonate apatite for efficient transgene delivery to primary, cancer and embryonic stem cells, by virtue of their high affinity binding with the DNA, ability to contact the cell membrane by ionic or ligand-receptor interactions and fast dissolution kinectis in endosomal acidic pH facilitating release of the DNA from the dissolving particles and also from the endosomes.