Nuclear data are the cornerstones of reactor physics and shielding calculations.Recently,China released CENDL-3.2 in 2020,and the US released ENDF/B-VIII.0 in 2018.Therefore,it is necessary to comprehensively evaluate...Nuclear data are the cornerstones of reactor physics and shielding calculations.Recently,China released CENDL-3.2 in 2020,and the US released ENDF/B-VIII.0 in 2018.Therefore,it is necessary to comprehensively evaluate the criticality computing performance of these newly released evaluated nuclear libraries.In this study,we used the NJOY2016 code to generate ACE format libraries based on the latest neutron data libraries(including CENDL-3.2,JEFF3.3,ENDF/B-VIII.0,and JENDL4.0).The MCNP code was used to conduct a detailed analysis of fission nuclides,including^(235)U,^(233)U,and^(239)Pu,in different evaluated nuclear data libraries based on 100 benchmarks.The criticality calculation performance of each library was evaluated using three statistical parameters:δk/σ,χ^(2),and<|Δ|>.Analysis of theδk/σparameter showed that CENDL-3.1 and JENDL-4.0 both had>10 benchmarks that exceeded 3r,whereas CENDL3.2,ENDFB-VIII.0,and JEFF-3.3 had,7,5,and 4 benchmarks,respectively,exceeding 3r.The ENDF/B-VII.1 library performed best,with only two benchmarks exceeding 3r.Compared to CENDL-3.1,CENDL-3.2 offers an improvement in criticality calculations.Compared to the JEFF-3.3 and ENDF/B-VIII.0 libraries,CENDL3.2 performs better in the calculation of the^(233)U assemblies,but it performs poorly in the pusl11 series case calculation of the^(239)Pu assemblies,and thus further improvement is needed.展开更多
This study presents a benchmark evaluation of the new ENDF/B-VIII.0 nuclear data library for the Organization for Economic Co-operation and Development/Nuclear Energy Agency Medium 1000 MWth sodium-cooled fast reactor...This study presents a benchmark evaluation of the new ENDF/B-VIII.0 nuclear data library for the Organization for Economic Co-operation and Development/Nuclear Energy Agency Medium 1000 MWth sodium-cooled fast reactor(SFR).The study presented herein covers both SFR core types,i.e.,metallic fueled(MET-1000)and oxide fueled(MOX-1000),simulated using the continuous-energy Monte Carlo Serpent2 code.The neutronics performances of the ENDF/B-VIII.0-based simulations were compared mainly to two libraries:ENDF/B-VII.1 and JENDL-4.0.The comparison includes several neutronics parameters evaluated for the beginning and end of the cycle conditions.These parameters include the effective multiplication factor keff,total effective delayed neutron fraction beff,sodium void reactivity(DqNa),Doppler constant(DqDoppler),and control rod worth(DqCR).In addition,a sensitivity study was used to reveal the major isotope/reaction pairs contributing to the discrepancy observed in the performance of the three libraries using 33 and 44-energy-group structures.展开更多
基金supported by the National Natural Science Foundation of China(No.11875128).
文摘Nuclear data are the cornerstones of reactor physics and shielding calculations.Recently,China released CENDL-3.2 in 2020,and the US released ENDF/B-VIII.0 in 2018.Therefore,it is necessary to comprehensively evaluate the criticality computing performance of these newly released evaluated nuclear libraries.In this study,we used the NJOY2016 code to generate ACE format libraries based on the latest neutron data libraries(including CENDL-3.2,JEFF3.3,ENDF/B-VIII.0,and JENDL4.0).The MCNP code was used to conduct a detailed analysis of fission nuclides,including^(235)U,^(233)U,and^(239)Pu,in different evaluated nuclear data libraries based on 100 benchmarks.The criticality calculation performance of each library was evaluated using three statistical parameters:δk/σ,χ^(2),and<|Δ|>.Analysis of theδk/σparameter showed that CENDL-3.1 and JENDL-4.0 both had>10 benchmarks that exceeded 3r,whereas CENDL3.2,ENDFB-VIII.0,and JEFF-3.3 had,7,5,and 4 benchmarks,respectively,exceeding 3r.The ENDF/B-VII.1 library performed best,with only two benchmarks exceeding 3r.Compared to CENDL-3.1,CENDL-3.2 offers an improvement in criticality calculations.Compared to the JEFF-3.3 and ENDF/B-VIII.0 libraries,CENDL3.2 performs better in the calculation of the^(233)U assemblies,but it performs poorly in the pusl11 series case calculation of the^(239)Pu assemblies,and thus further improvement is needed.
基金the Research Institute of Science and Engineering at the University of Sharjah(No.1802040790-P).
文摘This study presents a benchmark evaluation of the new ENDF/B-VIII.0 nuclear data library for the Organization for Economic Co-operation and Development/Nuclear Energy Agency Medium 1000 MWth sodium-cooled fast reactor(SFR).The study presented herein covers both SFR core types,i.e.,metallic fueled(MET-1000)and oxide fueled(MOX-1000),simulated using the continuous-energy Monte Carlo Serpent2 code.The neutronics performances of the ENDF/B-VIII.0-based simulations were compared mainly to two libraries:ENDF/B-VII.1 and JENDL-4.0.The comparison includes several neutronics parameters evaluated for the beginning and end of the cycle conditions.These parameters include the effective multiplication factor keff,total effective delayed neutron fraction beff,sodium void reactivity(DqNa),Doppler constant(DqDoppler),and control rod worth(DqCR).In addition,a sensitivity study was used to reveal the major isotope/reaction pairs contributing to the discrepancy observed in the performance of the three libraries using 33 and 44-energy-group structures.