期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于EMGD_HMM的音频自动分类
被引量:
3
1
作者
王超
吴亚锋
《电声技术》
2007年第11期52-54,60,共4页
音频自动分类是解决音频结构化问题和提取音频内容语义的重要手段之一,是当前基于内容的音频检索领域的一个研究热点。在考察音频数据特征的基础上,针对左-右密度隐马尔可夫模型(left-right DHMM)不能很好反映音频中状态反复的缺点,提...
音频自动分类是解决音频结构化问题和提取音频内容语义的重要手段之一,是当前基于内容的音频检索领域的一个研究热点。在考察音频数据特征的基础上,针对左-右密度隐马尔可夫模型(left-right DHMM)不能很好反映音频中状态反复的缺点,提出了一种基于各态历经混合高斯密度隐马尔可夫模型(EMGD_HMM)的分类器,并应用于语音、音乐和它们的混合声音的分类。实验结果表明,EMGD_HMM的分类精度要优于left-right DHMM。
展开更多
关键词
音频自动分类
left-right
D
hmm
模型
emgd
_
hmm
模型
MEL倒谱系数
下载PDF
职称材料
题名
基于EMGD_HMM的音频自动分类
被引量:
3
1
作者
王超
吴亚锋
机构
西北工业大学数据处理中心
出处
《电声技术》
2007年第11期52-54,60,共4页
文摘
音频自动分类是解决音频结构化问题和提取音频内容语义的重要手段之一,是当前基于内容的音频检索领域的一个研究热点。在考察音频数据特征的基础上,针对左-右密度隐马尔可夫模型(left-right DHMM)不能很好反映音频中状态反复的缺点,提出了一种基于各态历经混合高斯密度隐马尔可夫模型(EMGD_HMM)的分类器,并应用于语音、音乐和它们的混合声音的分类。实验结果表明,EMGD_HMM的分类精度要优于left-right DHMM。
关键词
音频自动分类
left-right
D
hmm
模型
emgd
_
hmm
模型
MEL倒谱系数
Keywords
automatic audio classification
left-right D
hmm
emgd
_
hmm
Mel frequency cepstrnm coefficient
分类号
TN912 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于EMGD_HMM的音频自动分类
王超
吴亚锋
《电声技术》
2007
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部