网络欺凌检测是网络空间信息内容安全的重要研究内容,也关乎青少年在线安全.针对目前网络欺凌检测方案存在的训练样本少、难以处理多义词、分类性能不太理想等问题,提出一种ELMo-TextCNN检测模型.该模型首先采用迁移学习思想,利用预训练...网络欺凌检测是网络空间信息内容安全的重要研究内容,也关乎青少年在线安全.针对目前网络欺凌检测方案存在的训练样本少、难以处理多义词、分类性能不太理想等问题,提出一种ELMo-TextCNN检测模型.该模型首先采用迁移学习思想,利用预训练的ELMo(embeddings from language models)生成动态词向量,不仅解决了网络欺凌样本规模小的问题,而且由于ELMo采用了双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络结构,会根据上下文推断每个词对应的词向量,能够根据语境理解多义词.该模型再通过擅长处理短文本数据的TextCNN(text convolutional neural network)提取文本特征,最后经过全连接层输出分类结果.实验结果证明,提出的ELMo-TextCNN检测方法能够处理一词多义,并获得更好的分类检测效果.展开更多
组织机构名识别是命名实体识别的核心任务之一,也是最困难的任务。近年来,预训练模型在中文自然语言处理领域得到广泛应用,预训练的词嵌入模型在中文命名实体识别上取得了非常好的效果,但是在组织机构名识别上还有很大的提升空间。针对...组织机构名识别是命名实体识别的核心任务之一,也是最困难的任务。近年来,预训练模型在中文自然语言处理领域得到广泛应用,预训练的词嵌入模型在中文命名实体识别上取得了非常好的效果,但是在组织机构名识别上还有很大的提升空间。针对这一问题,改进ELMO(embedding from language models)预训练模型,结合双向LSTM神经网络模型和条件随机场模型,去识别组织机构名。对于ELMO的改进,主要通过筛选高频机构词,然后将高频机构词加入中文字典,通过ELMO模型训练生成机构词向量和普通字向量。字向量不用考虑未登录词的问题,机构词向量引入了先验知识,结合起来可以使得生成的字词向量能够更好地表征组织机构名。实验结果表明,预训练模型的数据集相对较小时,该方法比字向量嵌入的方法有更好的效果,F1值提高了1.3%。展开更多
文摘网络欺凌检测是网络空间信息内容安全的重要研究内容,也关乎青少年在线安全.针对目前网络欺凌检测方案存在的训练样本少、难以处理多义词、分类性能不太理想等问题,提出一种ELMo-TextCNN检测模型.该模型首先采用迁移学习思想,利用预训练的ELMo(embeddings from language models)生成动态词向量,不仅解决了网络欺凌样本规模小的问题,而且由于ELMo采用了双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络结构,会根据上下文推断每个词对应的词向量,能够根据语境理解多义词.该模型再通过擅长处理短文本数据的TextCNN(text convolutional neural network)提取文本特征,最后经过全连接层输出分类结果.实验结果证明,提出的ELMo-TextCNN检测方法能够处理一词多义,并获得更好的分类检测效果.
文摘组织机构名识别是命名实体识别的核心任务之一,也是最困难的任务。近年来,预训练模型在中文自然语言处理领域得到广泛应用,预训练的词嵌入模型在中文命名实体识别上取得了非常好的效果,但是在组织机构名识别上还有很大的提升空间。针对这一问题,改进ELMO(embedding from language models)预训练模型,结合双向LSTM神经网络模型和条件随机场模型,去识别组织机构名。对于ELMO的改进,主要通过筛选高频机构词,然后将高频机构词加入中文字典,通过ELMO模型训练生成机构词向量和普通字向量。字向量不用考虑未登录词的问题,机构词向量引入了先验知识,结合起来可以使得生成的字词向量能够更好地表征组织机构名。实验结果表明,预训练模型的数据集相对较小时,该方法比字向量嵌入的方法有更好的效果,F1值提高了1.3%。