The electroosmotic flow near an earthworm surface is simulated numerically to further understand the anti soil adhesion mechanism of earthworm. A lattice Poisson method is employed to solve electric potential and char...The electroosmotic flow near an earthworm surface is simulated numerically to further understand the anti soil adhesion mechanism of earthworm. A lattice Poisson method is employed to solve electric potential and charge .distributiorts in the electric double layer along the earthworm surface. The external electric field is obtained by solving a Laplace equation. The electroosmotic flow controlled by the Navier-Stokes equations with external body force is simulated by the lattice Boltzmann method. A benchmark test shows that accurate electric potential distributions can be obtained by the LPM. The simulation shows that the moving vortices, which probably contribute to anti soil adhesion, are formed near earthworm body surface by the nonuniform and variational electrical force.展开更多
A laboratory test was performed to assess the effectiveness of vacuum preloading incorporated with electroosmotic (EOM) treatment on silty clay (combined method) for reclamation projects like new disposal ponds, where...A laboratory test was performed to assess the effectiveness of vacuum preloading incorporated with electroosmotic (EOM) treatment on silty clay (combined method) for reclamation projects like new disposal ponds, where the horizontal electrode configurations beneath the soil layer were possible and the drainage pipes and the prefabricated vertical drains (PVDs) system could be easily installed in advance before the sludge dragged from sea bed or river bed was filled into the site. Three groups of tests were conducted on the silty clay from Qinhuai River in Nanjing, China. The model is able to apply vacuum pressure at the bottom of the soil layer and a direct current electric field simultaneously. It is also possible to measure the pore pressures at different depths of soil column, and the changes in settlement and volume with the elapsed time. In this study, the vacuum preloading method, vacuum preloading applied at the bottom (VAB method), was applied and the cathodes were installed beneath the soil layer. The results obtained indicate substantial reduction in water content, and increases in dry density and undrained shear strength in comparison with those obtained by the vacuum preloading only, particularly at the positions close to the anode. The combined method utilizes the vertical drainage flow created by the electroosmosis integrating the horizontal drainage flow created mostly by the vacuum pressure. The total drainage flow can be calculated as a result of the vertical drainage flow by electroosmosis only and the horizontal drainage flow by the vacuum preloading only. The way of placement of the cathode and the anode in the combined method also overcomes the disadvantage of EOM method itself, i.e. the appearance of cracks between the anode and the surrounding soil. Moreover, it is observed that the vacuum preloading plays a primary role in earlier stage in deduction of free pore water; meanwhile, the electroosmotic method is more efficient in later stage for absorbing water in the diffused double layers of展开更多
Electroosmosis has been shown to be an effective means of different applications in various fields such as Micro-Electro-Mechanical systems (MEMS) and biomimetics applications. This paper aims to prove the concept t...Electroosmosis has been shown to be an effective means of different applications in various fields such as Micro-Electro-Mechanical systems (MEMS) and biomimetics applications. This paper aims to prove the concept that the electroosmosis phenomena can also be cooperated into larger scale applications in the building service industry like dehumidification or damping proof. The electroosmotic flow inside a porous medium is validated experimentally to further understand the dehumidification mechanism of combined techniques. An experimental test validates that the condensation from the porous medium can be obtained by electroosmotic force generated by external electric field, especially for specific desiccant powders like zeolite and diatomaceous earth. With a range of volts from 5 V to 20 V applying between the testing plates, the maximum flow rate through the cross section in the testing plate achieved during the peak period is 1.35 laL'min 1. These promising phenomena can act as an alternative way for energy choice in dehumidification industrial field. Further researches on new regeneration methods for solid desiccant dehumidification are required to make the system simple, energy-saving and suitable for small air conditioning units.展开更多
The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel...The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.展开更多
Nanopore-based electrochemical technique is a promising tool for detecting single proteins.However,detecting single proteins using a nanopipette in their native state without labeling is challenging due to the rapid t...Nanopore-based electrochemical technique is a promising tool for detecting single proteins.However,detecting single proteins using a nanopipette in their native state without labeling is challenging due to the rapid translocation,which results in an inefficient signal identification.In our study,we finely tuned the driving force equilibrium between electrophoretic force(EPF)and electroosmotic flow(EOF)inside the nanopipette for efficient sensing of single glucose oxidase(GOD)molecules.The duration time of GOD within the nanopipette is extended to about 4 ms.This strategy provided clear ionic current signals with a signal-to-noise ratio of 3.3.As EPF increased in the direction opposite to the motion of GOD,we observed a nonlinear growth in GOD’s duration time.This extended the duration to about 4.4 times longer at−1000 mV compared to at−800 mV.Hence,nanopore-based electrochemical sensing could be used for single GOD molecule analysis as an ultrasensitive method.展开更多
The lattice Boltzmann method was employed to simulate electroosmotic driven flow and Debye layer screening in con- ducting electrolyte around a porous structure with average size of 40 nm. The charge screening around ...The lattice Boltzmann method was employed to simulate electroosmotic driven flow and Debye layer screening in con- ducting electrolyte around a porous structure with average size of 40 nm. The charge screening around the nanopores was investigated by solving the vector-superpositioned potential equilibrium distribution function and adding electro-kinetic force term to the evolution equation. In this intermediate case of moderate Debye length, the electrophoresis problem becomes complicated. The motion of the particles distorts the screening cloud, which becomes asymmetric, resulting in very complex interactions between the electrolyte, the screening cloud and the particle; but the Electroosmotic Flow (EOF) behaviour was still considered based on the Helmoholtz-Smoluchowski model with adaptation to fit nanoporous flow in the porous structure. In the present approach, the flow in the nanopores is directly modelled; the detailed flow information can be obtained by simplifying the repeated macrostructure. Due to the symmetry of the domain, the size of computational domain can be largely reduced by less repeated spherical nanoparticles. Each pore of the medium contains several lattice nodes on the simplified curved edges and potential gradients are produced by adjusting the zeta potential value. The velocity results for pressure-driven and EOF flows agree well with the analytical solutions and recent experimental results. In particular, the interface between solid particles and fluids, the influences of porosity, solid particle diameter, yield stress and electric parameters in EOF were investigated. The anti-adhesion effect of electroosmotic pumping effect was evaluated, and the pulsed DC was applied in order to enhance the performance of the electroosmotic pumping. The results demonstrate that the present lattice Boltzmann model is capable of modelling flow through nanoporous media at certain restrictions while some results deviate from the predictions based on the macroscopic theories.展开更多
A perturbation analysis is presented in this paper for the electroosmotic (EO) flow of an Eyring fluid through a wide rectangular microchannel that rotates about an axis perpendicular to its own. Mildly shear-thinning...A perturbation analysis is presented in this paper for the electroosmotic (EO) flow of an Eyring fluid through a wide rectangular microchannel that rotates about an axis perpendicular to its own. Mildly shear-thinning rheology is assumed such that at the leading order the problem reduces to that of Newtonian EO flow in a rotating channel, while the shear thinning effect shows up in a higher-order problem. Using the relaxation time as the small ordering parameter, analytical solutions are deduced for the leading- as well as first-order problems in terms of the dimensionless Debye and rotation parameters. The velocity profiles of the Ekman-electric double layer (EDL) layer, which is the boundary layer that arises when the Ekman layer and the EDL are comparably thin, are also deduced for an Eyring fluid. It is shown that the present perturbation model can yield results that are close to the exact solutions even when the ordering parameter is as large as order unity. By this order of the relaxation time parameter, the enhancing effect on the rotating EO flow due to shear-thinning Eyring rheology can be significant.展开更多
The mechanism of dispersion induced by turn in the capillary electrophoresis channel flows was analyzed firstly. Then the mathematical model of electroosmotic flow is built, and the dispersion of the flow, with differ...The mechanism of dispersion induced by turn in the capillary electrophoresis channel flows was analyzed firstly. Then the mathematical model of electroosmotic flow is built, and the dispersion of the flow, with different distribution of charge at inner and outer wall in the turns, was simulated numerically using the finite differential method. A new approach of altering the distribution of charge at inner and outer wall in the turns was presented, based on the computational results, to minimize the dispersion induced by turn. Meanwhile, an optimization algorithm to analyze the numerical results and determine the optimal distribution of charge in the turns was also developed. It is found that the dispersion induced by turn in the capillary electrophoresis channel flows could be significantly suppressed by this approach.展开更多
Electroosmotic flow(EOF) is a promising way for driving and mixing fluids in microfluidics.For the parallel-plate microchannel with the hydrophobic surface, this paper solved the governing equations using the finite e...Electroosmotic flow(EOF) is a promising way for driving and mixing fluids in microfluidics.For the parallel-plate microchannel with the hydrophobic surface, this paper solved the governing equations using the finite element method(FEM), and the effects of microchannel height, electric strength and ionic concentration on EOF were thus investigated.The simulation indicates that the transient characteristics of EOF are similar in hydrophobic and hydrophilic microchannels, the steady time of EOF is proportional to the square of microchannel height, and the scale is microsecond.EOF velocity is proportional to the electric strength and independent of the channel height, and decreases slowly with the ionic concentration, which is lower than that in hydrophilic microchannel due to the presence of slip length in hydrophobic microchannel.The results can provide valuable insights into the optimal design of microchannel surfaces to achieve accurate EOF control in hydrophobic microchannel.展开更多
The escalation of zeta potential by the influence of wall slip for the electrokinetically modulated flow through a microchannel motivates to consider the impact of hydrodynamic slippage upon the zeta or surface potent...The escalation of zeta potential by the influence of wall slip for the electrokinetically modulated flow through a microchannel motivates to consider the impact of hydrodynamic slippage upon the zeta or surface potential.The reported study undergoes an analytical exploration of the pulsatile electroosmosis and shear-actuated flow characteristics of a fluid with a Newtonian model through a microchannel with parallel plates by invoking the reliance of a zeta or surface potential on slippage.The linearized Poisson-Boltzmann and momentum equations are solved analytically to obtain the explicit expression of the electrical potential induced in the electrical double layer(EDL),the flow velocity field,and the volumetric flow rate for an extensive span of parameters.The velocity field proximal to the microchannel wall is observed to enhance by an apparent zeta potential,and is further escalated for a thinner EDL and an oscillating electric field with a higher amplitude.However,near the core region of the microchannel,the flow velocity becomes invariant with the EDL thickness.The result shows that the lower wall velocity contributes to the flow velocity along with the electroosmotic body force and the impact of the velocity of the wall underneath diminishes proximal to the upper wall.Moreover,the volumetric flow rate increases when the thickness of the EDL decreases,owing to the influence of the wall slip.However,for thinner EDLs and medium and higher oscillating Reynolds numbers,the volumetric flow rate varies non-monotonously,correlative to the slip-free and slip cases.展开更多
The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immis...The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immiscible power-law fluids through a microtube is studied with consideration of zeta potential difference near the two-liquid interface. The modified Cauchy momentum equation in cylindrical coordinate governing the two-liquid velocity distributions is solved where both peripheral and inner liquids are represented by power-law model. The two-fluid velocity distribution under the combined interaction of power-law rheological effect and circular wall effect is evaluated at different viscosities and different electroosmotic characters of inner and peripheral power-law fluids. The velocity of inner flow is a function of the viscosities, electric properties and electroosmotic characters of two power-law fluids, while the peripheral flow is majorly influenced by the viscosity, electric property and electroosmotic characters of peripheral fluid. Irrespective of the configuration manner of power-law fluids, the shear thinning fluid is more sensitive to the change of other parameters.展开更多
A field-modulated electroosmotic flow (FMEOF) in a microchannel can be obtained by applying modulating electric fields in a direction perpendicular to the channel wall. Micro-vortexes are generated around the electr...A field-modulated electroosmotic flow (FMEOF) in a microchannel can be obtained by applying modulating electric fields in a direction perpendicular to the channel wall. Micro-vortexes are generated around the electrodes along with an EOF due to the surface charge on the modulated wall. When polarizable particles are suspended near the electrodes, they experience dielectrophoretic forces due to a non-uniform electric field. In this paper, micro-vortexes and dielectrophoretic forces are combined to achieve separation and trap different sized particles in a continuous flow. Numerical results indicate that by adjusting the driving electric field parallel to the channel wall and the modulating electric field, the ratio of dielectrophoretic and hydrodynamic forces can be altered. One type of particles can be trapped by micro-vortexes (negative dielectrophoresis (DEP)), and the other particles are transported to the downstream so that the particles are separated. The influence of the electrode length and the channel height on the trapping rate is investigated.展开更多
In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equat...In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.展开更多
The mechanical dewatering of activated sludge is difficult due to its high compressibility, which can be improved by electroosmosis. In electroosmosis, direct electric field is applied to sludge cake. Based on the con...The mechanical dewatering of activated sludge is difficult due to its high compressibility, which can be improved by electroosmosis. In electroosmosis, direct electric field is applied to sludge cake. Based on the conductivity modes of different sludge beds, a model is presented in which sludge cake consists of two series parts in the circuit: a dewatered bed and an undewatered one. The dewatered bed called solid conductor is mainly made up of immovable water and sludge particles. The undewatered bed includes movable water and solid conductor, which are connected in parallel in the circuit. The model describes the variation of water content with time and electric power consumption as a function of water content in sludge cake, and interprets the reason for the variation of electroosmotic dewatering rate. Comparison with the experimental data for electroosmotic dewatering under constant voltage supports the validity of the model.展开更多
A semi-analytical solution is presented using method of Laplace transform for the transient pulse electroosmotic flow (EOF) of Maxwell fluid in a circular micro-channel. The driving mode of pulse EOF here is considere...A semi-analytical solution is presented using method of Laplace transform for the transient pulse electroosmotic flow (EOF) of Maxwell fluid in a circular micro-channel. The driving mode of pulse EOF here is considered as an ideal rectangle pulse. The solution involves solving the linearized Poisson-Boltzmann (P-B) equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. The results show that the profiles of pulse EOF velocity vary rapidly and gradually stabilize as the increase of time <img src="Edit_440fb0f5-5539-4a78-8311-93b2664c8117.png" alt="" /> within a half period. The velocity profiles at the center of the micro-channel increase significantly with relaxation time <img src="Edit_ffb813ed-0046-40bc-95e6-76057f46ce32.png" alt="" />, especially for the smaller pulse width <em>a</em>. However, as the pulse width <em>a </em>increases, this change will be less obvious. At the same time, the different change frequency of velocity profiles will slow down, which means a long cycle time. Additionally, the time needed to attain the steady status becomes longer with the increase of relaxation time <img src="Edit_d1b31535-84c1-417e-b987-6ca53ab1616b.png" alt="" /> and pulse width <em>a</em>.展开更多
文摘The electroosmotic flow near an earthworm surface is simulated numerically to further understand the anti soil adhesion mechanism of earthworm. A lattice Poisson method is employed to solve electric potential and charge .distributiorts in the electric double layer along the earthworm surface. The external electric field is obtained by solving a Laplace equation. The electroosmotic flow controlled by the Navier-Stokes equations with external body force is simulated by the lattice Boltzmann method. A benchmark test shows that accurate electric potential distributions can be obtained by the LPM. The simulation shows that the moving vortices, which probably contribute to anti soil adhesion, are formed near earthworm body surface by the nonuniform and variational electrical force.
文摘A laboratory test was performed to assess the effectiveness of vacuum preloading incorporated with electroosmotic (EOM) treatment on silty clay (combined method) for reclamation projects like new disposal ponds, where the horizontal electrode configurations beneath the soil layer were possible and the drainage pipes and the prefabricated vertical drains (PVDs) system could be easily installed in advance before the sludge dragged from sea bed or river bed was filled into the site. Three groups of tests were conducted on the silty clay from Qinhuai River in Nanjing, China. The model is able to apply vacuum pressure at the bottom of the soil layer and a direct current electric field simultaneously. It is also possible to measure the pore pressures at different depths of soil column, and the changes in settlement and volume with the elapsed time. In this study, the vacuum preloading method, vacuum preloading applied at the bottom (VAB method), was applied and the cathodes were installed beneath the soil layer. The results obtained indicate substantial reduction in water content, and increases in dry density and undrained shear strength in comparison with those obtained by the vacuum preloading only, particularly at the positions close to the anode. The combined method utilizes the vertical drainage flow created by the electroosmosis integrating the horizontal drainage flow created mostly by the vacuum pressure. The total drainage flow can be calculated as a result of the vertical drainage flow by electroosmosis only and the horizontal drainage flow by the vacuum preloading only. The way of placement of the cathode and the anode in the combined method also overcomes the disadvantage of EOM method itself, i.e. the appearance of cracks between the anode and the surrounding soil. Moreover, it is observed that the vacuum preloading plays a primary role in earlier stage in deduction of free pore water; meanwhile, the electroosmotic method is more efficient in later stage for absorbing water in the diffused double layers of
文摘Electroosmosis has been shown to be an effective means of different applications in various fields such as Micro-Electro-Mechanical systems (MEMS) and biomimetics applications. This paper aims to prove the concept that the electroosmosis phenomena can also be cooperated into larger scale applications in the building service industry like dehumidification or damping proof. The electroosmotic flow inside a porous medium is validated experimentally to further understand the dehumidification mechanism of combined techniques. An experimental test validates that the condensation from the porous medium can be obtained by electroosmotic force generated by external electric field, especially for specific desiccant powders like zeolite and diatomaceous earth. With a range of volts from 5 V to 20 V applying between the testing plates, the maximum flow rate through the cross section in the testing plate achieved during the peak period is 1.35 laL'min 1. These promising phenomena can act as an alternative way for energy choice in dehumidification industrial field. Further researches on new regeneration methods for solid desiccant dehumidification are required to make the system simple, energy-saving and suitable for small air conditioning units.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China(Grant No.2021BS01008)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2323)the Scientific Research Funding Project for introduced high level talents of IMNU(Grant No.2020YJRC014)。
文摘The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.
基金supported by the National Natural Science Foundation of China(Nos.22104052,2233000271,22027806).
文摘Nanopore-based electrochemical technique is a promising tool for detecting single proteins.However,detecting single proteins using a nanopipette in their native state without labeling is challenging due to the rapid translocation,which results in an inefficient signal identification.In our study,we finely tuned the driving force equilibrium between electrophoretic force(EPF)and electroosmotic flow(EOF)inside the nanopipette for efficient sensing of single glucose oxidase(GOD)molecules.The duration time of GOD within the nanopipette is extended to about 4 ms.This strategy provided clear ionic current signals with a signal-to-noise ratio of 3.3.As EPF increased in the direction opposite to the motion of GOD,we observed a nonlinear growth in GOD’s duration time.This extended the duration to about 4.4 times longer at−1000 mV compared to at−800 mV.Hence,nanopore-based electrochemical sensing could be used for single GOD molecule analysis as an ultrasensitive method.
文摘The lattice Boltzmann method was employed to simulate electroosmotic driven flow and Debye layer screening in con- ducting electrolyte around a porous structure with average size of 40 nm. The charge screening around the nanopores was investigated by solving the vector-superpositioned potential equilibrium distribution function and adding electro-kinetic force term to the evolution equation. In this intermediate case of moderate Debye length, the electrophoresis problem becomes complicated. The motion of the particles distorts the screening cloud, which becomes asymmetric, resulting in very complex interactions between the electrolyte, the screening cloud and the particle; but the Electroosmotic Flow (EOF) behaviour was still considered based on the Helmoholtz-Smoluchowski model with adaptation to fit nanoporous flow in the porous structure. In the present approach, the flow in the nanopores is directly modelled; the detailed flow information can be obtained by simplifying the repeated macrostructure. Due to the symmetry of the domain, the size of computational domain can be largely reduced by less repeated spherical nanoparticles. Each pore of the medium contains several lattice nodes on the simplified curved edges and potential gradients are produced by adjusting the zeta potential value. The velocity results for pressure-driven and EOF flows agree well with the analytical solutions and recent experimental results. In particular, the interface between solid particles and fluids, the influences of porosity, solid particle diameter, yield stress and electric parameters in EOF were investigated. The anti-adhesion effect of electroosmotic pumping effect was evaluated, and the pulsed DC was applied in order to enhance the performance of the electroosmotic pumping. The results demonstrate that the present lattice Boltzmann model is capable of modelling flow through nanoporous media at certain restrictions while some results deviate from the predictions based on the macroscopic theories.
基金financially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China, through General Research Fund Project HKU 715510E and 17206615the University of Hong Kong through the Small Project Funding Scheme under Project Code 201309176109
文摘A perturbation analysis is presented in this paper for the electroosmotic (EO) flow of an Eyring fluid through a wide rectangular microchannel that rotates about an axis perpendicular to its own. Mildly shear-thinning rheology is assumed such that at the leading order the problem reduces to that of Newtonian EO flow in a rotating channel, while the shear thinning effect shows up in a higher-order problem. Using the relaxation time as the small ordering parameter, analytical solutions are deduced for the leading- as well as first-order problems in terms of the dimensionless Debye and rotation parameters. The velocity profiles of the Ekman-electric double layer (EDL) layer, which is the boundary layer that arises when the Ekman layer and the EDL are comparably thin, are also deduced for an Eyring fluid. It is shown that the present perturbation model can yield results that are close to the exact solutions even when the ordering parameter is as large as order unity. By this order of the relaxation time parameter, the enhancing effect on the rotating EO flow due to shear-thinning Eyring rheology can be significant.
基金Project supported by the National Natural Science Foundation of China (No. 20299030)
文摘The mechanism of dispersion induced by turn in the capillary electrophoresis channel flows was analyzed firstly. Then the mathematical model of electroosmotic flow is built, and the dispersion of the flow, with different distribution of charge at inner and outer wall in the turns, was simulated numerically using the finite differential method. A new approach of altering the distribution of charge at inner and outer wall in the turns was presented, based on the computational results, to minimize the dispersion induced by turn. Meanwhile, an optimization algorithm to analyze the numerical results and determine the optimal distribution of charge in the turns was also developed. It is found that the dispersion induced by turn in the capillary electrophoresis channel flows could be significantly suppressed by this approach.
基金Supported by the National Natural Science Foundation of China (Grant No. 50730007)
文摘Electroosmotic flow(EOF) is a promising way for driving and mixing fluids in microfluidics.For the parallel-plate microchannel with the hydrophobic surface, this paper solved the governing equations using the finite element method(FEM), and the effects of microchannel height, electric strength and ionic concentration on EOF were thus investigated.The simulation indicates that the transient characteristics of EOF are similar in hydrophobic and hydrophilic microchannels, the steady time of EOF is proportional to the square of microchannel height, and the scale is microsecond.EOF velocity is proportional to the electric strength and independent of the channel height, and decreases slowly with the ionic concentration, which is lower than that in hydrophilic microchannel due to the presence of slip length in hydrophobic microchannel.The results can provide valuable insights into the optimal design of microchannel surfaces to achieve accurate EOF control in hydrophobic microchannel.
文摘The escalation of zeta potential by the influence of wall slip for the electrokinetically modulated flow through a microchannel motivates to consider the impact of hydrodynamic slippage upon the zeta or surface potential.The reported study undergoes an analytical exploration of the pulsatile electroosmosis and shear-actuated flow characteristics of a fluid with a Newtonian model through a microchannel with parallel plates by invoking the reliance of a zeta or surface potential on slippage.The linearized Poisson-Boltzmann and momentum equations are solved analytically to obtain the explicit expression of the electrical potential induced in the electrical double layer(EDL),the flow velocity field,and the volumetric flow rate for an extensive span of parameters.The velocity field proximal to the microchannel wall is observed to enhance by an apparent zeta potential,and is further escalated for a thinner EDL and an oscillating electric field with a higher amplitude.However,near the core region of the microchannel,the flow velocity becomes invariant with the EDL thickness.The result shows that the lower wall velocity contributes to the flow velocity along with the electroosmotic body force and the impact of the velocity of the wall underneath diminishes proximal to the upper wall.Moreover,the volumetric flow rate increases when the thickness of the EDL decreases,owing to the influence of the wall slip.However,for thinner EDLs and medium and higher oscillating Reynolds numbers,the volumetric flow rate varies non-monotonously,correlative to the slip-free and slip cases.
文摘The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immiscible power-law fluids through a microtube is studied with consideration of zeta potential difference near the two-liquid interface. The modified Cauchy momentum equation in cylindrical coordinate governing the two-liquid velocity distributions is solved where both peripheral and inner liquids are represented by power-law model. The two-fluid velocity distribution under the combined interaction of power-law rheological effect and circular wall effect is evaluated at different viscosities and different electroosmotic characters of inner and peripheral power-law fluids. The velocity of inner flow is a function of the viscosities, electric properties and electroosmotic characters of two power-law fluids, while the peripheral flow is majorly influenced by the viscosity, electric property and electroosmotic characters of peripheral fluid. Irrespective of the configuration manner of power-law fluids, the shear thinning fluid is more sensitive to the change of other parameters.
基金Project supported by the National Natural Science Foundation of China(No.11572139)
文摘A field-modulated electroosmotic flow (FMEOF) in a microchannel can be obtained by applying modulating electric fields in a direction perpendicular to the channel wall. Micro-vortexes are generated around the electrodes along with an EOF due to the surface charge on the modulated wall. When polarizable particles are suspended near the electrodes, they experience dielectrophoretic forces due to a non-uniform electric field. In this paper, micro-vortexes and dielectrophoretic forces are combined to achieve separation and trap different sized particles in a continuous flow. Numerical results indicate that by adjusting the driving electric field parallel to the channel wall and the modulating electric field, the ratio of dielectrophoretic and hydrodynamic forces can be altered. One type of particles can be trapped by micro-vortexes (negative dielectrophoresis (DEP)), and the other particles are transported to the downstream so that the particles are separated. The influence of the electrode length and the channel height on the trapping rate is investigated.
基金Project supported by the National Natural Science Foundation of China(Nos.11102102 and 91130017)the Independent Innovation Foundation of Shandong University(No.2013ZRYQ002)
文摘In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.
基金Supported by Tianjin Research Program of Application Foundation and Advanced Technology(No. 09JCYBJC08200)
文摘The mechanical dewatering of activated sludge is difficult due to its high compressibility, which can be improved by electroosmosis. In electroosmosis, direct electric field is applied to sludge cake. Based on the conductivity modes of different sludge beds, a model is presented in which sludge cake consists of two series parts in the circuit: a dewatered bed and an undewatered one. The dewatered bed called solid conductor is mainly made up of immovable water and sludge particles. The undewatered bed includes movable water and solid conductor, which are connected in parallel in the circuit. The model describes the variation of water content with time and electric power consumption as a function of water content in sludge cake, and interprets the reason for the variation of electroosmotic dewatering rate. Comparison with the experimental data for electroosmotic dewatering under constant voltage supports the validity of the model.
文摘A semi-analytical solution is presented using method of Laplace transform for the transient pulse electroosmotic flow (EOF) of Maxwell fluid in a circular micro-channel. The driving mode of pulse EOF here is considered as an ideal rectangle pulse. The solution involves solving the linearized Poisson-Boltzmann (P-B) equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. The results show that the profiles of pulse EOF velocity vary rapidly and gradually stabilize as the increase of time <img src="Edit_440fb0f5-5539-4a78-8311-93b2664c8117.png" alt="" /> within a half period. The velocity profiles at the center of the micro-channel increase significantly with relaxation time <img src="Edit_ffb813ed-0046-40bc-95e6-76057f46ce32.png" alt="" />, especially for the smaller pulse width <em>a</em>. However, as the pulse width <em>a </em>increases, this change will be less obvious. At the same time, the different change frequency of velocity profiles will slow down, which means a long cycle time. Additionally, the time needed to attain the steady status becomes longer with the increase of relaxation time <img src="Edit_d1b31535-84c1-417e-b987-6ca53ab1616b.png" alt="" /> and pulse width <em>a</em>.