In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required t...In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required to attenuate electromagnetic wave energy.In this work,the cellulose solution is obtained by dissolving cotton through hydrogen bond driving self-assembly using sodium hydroxide(NaOH)/urea solution,and cellulose aerogels(CA)are prepared by gelation and freeze-drying.Then,the cellulose carbon aerogel@reduced graphene oxide aerogels(CCA@rGO)are prepared by vacuum impregnation,freeze-drying followed by thermal annealing,and finally,the CCA@rGO/polydimethylsiloxane(PDMS)EMI shielding composites are prepared by backfilling with PDMS.Owing to skin-core structure of CCA@rGO,the complete three-dimensional(3D)double-layer con-ductive network can be successfully constructed.When the loading of CCA@rGO is 3.05 wt%,CCA@rGO/PDMS EMI shielding composites have an excellent EMI shielding effectiveness(EMI SE)of 51 dB,which is 3.9 times higher than that of the co-blended CCA/rGO/PDMS EMI shielding composites(13 dB)with the same loading of fillers.At this time,the CCA@rGO/PDMS EMI shielding composites have excellent thermal stability(T_(HRI) of 178.3℃)and good thermal conductivity coefficient(λ of 0.65 W m^(-1) K^(-1)).Excellent comprehensive performance makes CCA@rGO/PDMS EMI shielding composites great prospect for applications in lightweight,flexible EMI shielding composites.展开更多
在中高压大容量的工作环境下,有源电力滤波器(active power filter,APF)谐波抑制性能及产生的电磁干扰受到主电路功率半导体器件开关频率的制约。提出一种适用于中高压混合型并联有源电力滤波器的新型滑模控制方法。该方法对电网电流和...在中高压大容量的工作环境下,有源电力滤波器(active power filter,APF)谐波抑制性能及产生的电磁干扰受到主电路功率半导体器件开关频率的制约。提出一种适用于中高压混合型并联有源电力滤波器的新型滑模控制方法。该方法对电网电流和APF直流母线中点电位进行解耦跟踪控制,并将对状态变量的跟踪控制和脉宽调制(pulse width modulation,PWM)统一起来,在相同的谐波抑制精度下,可实现对开关频率的优化,将其约束在较低的确定频带内。仿真和实验结果证明,该滑模控制方法可以有效抑制由电网电压畸变和非线性负载引起的谐波电流,同时具有电磁干扰小的优点。展开更多
As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,li...As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,limited EMI shielding materials are successfully used in practical applications,due to the heavy thickness and absence of sufficient strength or flexibility.Herein,an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process.The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9±5.0 MPa and a fracture strain of 4.6±0.2%.Particularly,the paper shows a high electrical conductivity of 2506.6 S m?1 and EMI shielding effectiveness(EMI SE)of 38.4 dB due to the sandwich structure in improving EMI SE,and the gradient structure on regulating the contributions from reflection and absorption.This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.展开更多
Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain, bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients...Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain, bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis. Data sources Using the key words “pulsed electromagnetic fields” and “osteoporosis”, we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3) case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English. Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.展开更多
Renewable porous biochar and 2 D MXene have attracted significant attention in high-end electromagnetic interference(EMI)shielding fields,due to unique orderly structures and excellent electrical conductivity(r)value....Renewable porous biochar and 2 D MXene have attracted significant attention in high-end electromagnetic interference(EMI)shielding fields,due to unique orderly structures and excellent electrical conductivity(r)value.In this work,the wood-derived porous carbon(WPC)skeleton from natural wood was performed as a template.And excellent conductive and ultra-light 3D MXene aerogel was then constructed to prepare the MXene aerogel/WPC composites,based on highly ordered honeycomb cells inner WPC as a microreactor.Higher carbonization temperature is more conducive to the graphitization degree of natural wood.MXene aerogel/WPC composites achieve the optimal EMI SE value of up to 71.3 d B at density as low as 0.197 g/cm^3.Such wall-like"mortar-brick"structures(WPC skeleton as"mortar"and MXene aerogel as"brick")not only effectively solve the unstable structure problem of MXene aerogel networks,but also greatly prolong the transmission paths of the electromagnetic waves and dissipate the incident electromagnetic waves in the form of heat and electric energy,thereby exhibiting the superior EMI shielding performance.In addition,MXene aerogel/WPC composites also exhibit good anisotropic compressive strength,excellent thermal insulation and flame retardant properties.Such ultra-light,green and efficient multi-functional bio-carbon-based composites have great application potential in the high-end EMI shielding fields of aerospace and national defence industry,etc.展开更多
With the increasing applications of novel materials and structures in new-generation aircraft,conventional joining techniques in aircraft component assembly are greatly challenged.To meet those challenges,the electrom...With the increasing applications of novel materials and structures in new-generation aircraft,conventional joining techniques in aircraft component assembly are greatly challenged.To meet those challenges,the electromagnetic riveting(EMR)technique was developed as an advanced joining tool,which exhibits obvious advantages in the assembly of new-generation aircraft.In this paper,the riveting principle of EMR was analyzed,and its development history and status were presented in detail.Then,equipment features of three typical EMR systems were given.Moreover,three important applications of EMR were covered,i.e.,composite structure riveting,titanium rivet and large-size aluminum rivet riveting,and interference fit bolt installation.Specially,a novel strengthening method for mechanical linking holes based on EMR was also presented,which can significantly improve the fatigue behaviors of mechanical joints.Finally,open questions in the EMR field were discussed,and some recommendations for future work were also made.This paper can be useful for optimizing the joint designs of aircraft components and improving the level of aircraft maintenance.展开更多
Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i...Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).展开更多
With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materia...With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.展开更多
The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective...The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.展开更多
In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking ...In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking was established by the Winkler foundation beam theory, and the stress evolution law of surrounding rock with different dip angles of the seam during the mining process was analyzed by using FLAC3 D. The results show that: with the dip angle changing from 45° to 0°, the solid-coal side of gobside entry begins to form an L-shaped stress concentration zone at a dip angle of 30°, and the stress concentration degree goes to higher and higher levels. However, the stress concentration degree of the coalpillar side goes to lower and lower levels; the influence range and peak stress of the abutment at the lateral strata of adjacent gob increase with dip angle decreasing and reach a maximum value at a dip angle of 0°, but the tailgate is not affected; the abutment pressure superposition of two adjacent gobs leads to stress concentration further enhancing in both sides of gob-side entry. With the influence of strong mining disturbance, rock burst is easily induced by dynamic and static combined load in the advanced segment of gob-side entry. To achieve stability control similar to that in the roadway, the key control strategy is to reinforce surrounding rock and unload both sides. Accordingly, the large-diameter drilling and high-pressure water injection combined unloading and reinforced support cooperative control technology was proposed and applied in field test. The results of Electromagnetic Emission(EME) and field observation showed that unloading and surrounding rock control effect was obvious.展开更多
Aim: To evaluate the effects of 60 Hz extremely low frequency (ELF) elelctromagnetic field (EMF) exposure on germ cell apoptosis in the testis of mice. Methods: Adult male BALB/c mice (7 weeks of age) were exposed to ...Aim: To evaluate the effects of 60 Hz extremely low frequency (ELF) elelctromagnetic field (EMF) exposure on germ cell apoptosis in the testis of mice. Methods: Adult male BALB/c mice (7 weeks of age) were exposed to a 60 Hz EMF of 0.1 mT or 0.5 mT for 24 h/day. A sham-exposed group served as the control. After 8 weeks of exposure, the mice were sacrificed. Germ cell apoptosis in the testis was assessed by histopathological examination, the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and flow cytometric examination of isolated spermatogenic cells stained with 7 aminoactinomycin D (7-AAD). Results: EMF exposure did not significantly affect the body and testis weights, but significantly increased the incidence of germ cell death. The distinguishing morphological feature of EMF exposure was a decrement in the number of well organized seminiferous tubules. Quantitative analysis of TUNEL-positive germ cells showed a significantly higher apoptotic rate in the 0.5 mT exposed mice than that in the sham controls (P<0.05), while the difference between the two exposed groups was insignificant. The TUNEL-positive cells were mainly spermatogonia. In flow cytometry analysis, the percentage of live cells [forward scatter count (FSC)high7-AAD-] was lower in the exposed groups than that in the controls (Figure 5A), but the decrease in viability was not statistically significant. Conclusion: Continuous exposure to ELF EMF may induce testicular germ cell apoptosis in mice.展开更多
基金the Foundation of National Natural Science Foundation of China(51773169 and 51973173)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2020JQ-164)Y.Q.Guo thanks the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX202055)Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required to attenuate electromagnetic wave energy.In this work,the cellulose solution is obtained by dissolving cotton through hydrogen bond driving self-assembly using sodium hydroxide(NaOH)/urea solution,and cellulose aerogels(CA)are prepared by gelation and freeze-drying.Then,the cellulose carbon aerogel@reduced graphene oxide aerogels(CCA@rGO)are prepared by vacuum impregnation,freeze-drying followed by thermal annealing,and finally,the CCA@rGO/polydimethylsiloxane(PDMS)EMI shielding composites are prepared by backfilling with PDMS.Owing to skin-core structure of CCA@rGO,the complete three-dimensional(3D)double-layer con-ductive network can be successfully constructed.When the loading of CCA@rGO is 3.05 wt%,CCA@rGO/PDMS EMI shielding composites have an excellent EMI shielding effectiveness(EMI SE)of 51 dB,which is 3.9 times higher than that of the co-blended CCA/rGO/PDMS EMI shielding composites(13 dB)with the same loading of fillers.At this time,the CCA@rGO/PDMS EMI shielding composites have excellent thermal stability(T_(HRI) of 178.3℃)and good thermal conductivity coefficient(λ of 0.65 W m^(-1) K^(-1)).Excellent comprehensive performance makes CCA@rGO/PDMS EMI shielding composites great prospect for applications in lightweight,flexible EMI shielding composites.
文摘在中高压大容量的工作环境下,有源电力滤波器(active power filter,APF)谐波抑制性能及产生的电磁干扰受到主电路功率半导体器件开关频率的制约。提出一种适用于中高压混合型并联有源电力滤波器的新型滑模控制方法。该方法对电网电流和APF直流母线中点电位进行解耦跟踪控制,并将对状态变量的跟踪控制和脉宽调制(pulse width modulation,PWM)统一起来,在相同的谐波抑制精度下,可实现对开关频率的优化,将其约束在较低的确定频带内。仿真和实验结果证明,该滑模控制方法可以有效抑制由电网电压畸变和非线性负载引起的谐波电流,同时具有电磁干扰小的优点。
基金financial support from the National Natural Science Foundation of China(31771081,51472259)the Science and Technology Commission of Shanghai Municipality(18ZR1445100)Beijing Forestry University Outstanding Young Talent Cultivation Project(2019JQ03014).
文摘As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,limited EMI shielding materials are successfully used in practical applications,due to the heavy thickness and absence of sufficient strength or flexibility.Herein,an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process.The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9±5.0 MPa and a fracture strain of 4.6±0.2%.Particularly,the paper shows a high electrical conductivity of 2506.6 S m?1 and EMI shielding effectiveness(EMI SE)of 38.4 dB due to the sandwich structure in improving EMI SE,and the gradient structure on regulating the contributions from reflection and absorption.This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.
基金This work was supported by a grant from the National Natural Science Foundation of China (No. 30672215).
文摘Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain, bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis. Data sources Using the key words “pulsed electromagnetic fields” and “osteoporosis”, we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3) case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English. Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.
基金supported by the Foundation of National Natural Science Foundation of China(51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+2 种基金Space Supporting Fund from China Aerospace Science and Industry Corporation(2019-HT-XG)Foundation of Aeronautics Science Fund(2017ZF53071)the School-enterprise Collaborative Innovation Fund for Graduate Students of Northwestern Polytechnical University(XQ201913)。
文摘Renewable porous biochar and 2 D MXene have attracted significant attention in high-end electromagnetic interference(EMI)shielding fields,due to unique orderly structures and excellent electrical conductivity(r)value.In this work,the wood-derived porous carbon(WPC)skeleton from natural wood was performed as a template.And excellent conductive and ultra-light 3D MXene aerogel was then constructed to prepare the MXene aerogel/WPC composites,based on highly ordered honeycomb cells inner WPC as a microreactor.Higher carbonization temperature is more conducive to the graphitization degree of natural wood.MXene aerogel/WPC composites achieve the optimal EMI SE value of up to 71.3 d B at density as low as 0.197 g/cm^3.Such wall-like"mortar-brick"structures(WPC skeleton as"mortar"and MXene aerogel as"brick")not only effectively solve the unstable structure problem of MXene aerogel networks,but also greatly prolong the transmission paths of the electromagnetic waves and dissipate the incident electromagnetic waves in the form of heat and electric energy,thereby exhibiting the superior EMI shielding performance.In addition,MXene aerogel/WPC composites also exhibit good anisotropic compressive strength,excellent thermal insulation and flame retardant properties.Such ultra-light,green and efficient multi-functional bio-carbon-based composites have great application potential in the high-end EMI shielding fields of aerospace and national defence industry,etc.
基金funded by the Major National Research Project of Numerical Control Machine and Basic Manufacturing Equipment of China(No.2016ZX04002004-008).
文摘With the increasing applications of novel materials and structures in new-generation aircraft,conventional joining techniques in aircraft component assembly are greatly challenged.To meet those challenges,the electromagnetic riveting(EMR)technique was developed as an advanced joining tool,which exhibits obvious advantages in the assembly of new-generation aircraft.In this paper,the riveting principle of EMR was analyzed,and its development history and status were presented in detail.Then,equipment features of three typical EMR systems were given.Moreover,three important applications of EMR were covered,i.e.,composite structure riveting,titanium rivet and large-size aluminum rivet riveting,and interference fit bolt installation.Specially,a novel strengthening method for mechanical linking holes based on EMR was also presented,which can significantly improve the fatigue behaviors of mechanical joints.Finally,open questions in the EMR field were discussed,and some recommendations for future work were also made.This paper can be useful for optimizing the joint designs of aircraft components and improving the level of aircraft maintenance.
基金The authors are grateful for the support and funding from the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120093)Foundation of National Natural Science Foundation of China(Nos.U21A2093 and 51973173)Technological Base Scientific Research Projects(Highly Thermal conductivity Nonmetal Materials).
文摘Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+1 种基金Fundamental Research Funds for the Central Universities(D5000210627)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.
基金Supported by National Natural Science Foundation of China (50625927,50727904)the National Basic Research Program (973) of China (2007CB209407)Ministry of Communications’Scientific and Technological Program of Transportation Development in Western China(2009318000008)
文摘The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.
基金supported by the Key Project of National Natural Science Foundation of China (No.51634001)the National Natural Science Foundation of China (No.51404269 and 51674253)+1 种基金the State Key Research Development Program of China (No.2016YFC0801403)the Key Research Development Program of Jiangsu Province,China (No.BE2015040)
文摘In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking was established by the Winkler foundation beam theory, and the stress evolution law of surrounding rock with different dip angles of the seam during the mining process was analyzed by using FLAC3 D. The results show that: with the dip angle changing from 45° to 0°, the solid-coal side of gobside entry begins to form an L-shaped stress concentration zone at a dip angle of 30°, and the stress concentration degree goes to higher and higher levels. However, the stress concentration degree of the coalpillar side goes to lower and lower levels; the influence range and peak stress of the abutment at the lateral strata of adjacent gob increase with dip angle decreasing and reach a maximum value at a dip angle of 0°, but the tailgate is not affected; the abutment pressure superposition of two adjacent gobs leads to stress concentration further enhancing in both sides of gob-side entry. With the influence of strong mining disturbance, rock burst is easily induced by dynamic and static combined load in the advanced segment of gob-side entry. To achieve stability control similar to that in the roadway, the key control strategy is to reinforce surrounding rock and unload both sides. Accordingly, the large-diameter drilling and high-pressure water injection combined unloading and reinforced support cooperative control technology was proposed and applied in field test. The results of Electromagnetic Emission(EME) and field observation showed that unloading and surrounding rock control effect was obvious.
文摘Aim: To evaluate the effects of 60 Hz extremely low frequency (ELF) elelctromagnetic field (EMF) exposure on germ cell apoptosis in the testis of mice. Methods: Adult male BALB/c mice (7 weeks of age) were exposed to a 60 Hz EMF of 0.1 mT or 0.5 mT for 24 h/day. A sham-exposed group served as the control. After 8 weeks of exposure, the mice were sacrificed. Germ cell apoptosis in the testis was assessed by histopathological examination, the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and flow cytometric examination of isolated spermatogenic cells stained with 7 aminoactinomycin D (7-AAD). Results: EMF exposure did not significantly affect the body and testis weights, but significantly increased the incidence of germ cell death. The distinguishing morphological feature of EMF exposure was a decrement in the number of well organized seminiferous tubules. Quantitative analysis of TUNEL-positive germ cells showed a significantly higher apoptotic rate in the 0.5 mT exposed mice than that in the sham controls (P<0.05), while the difference between the two exposed groups was insignificant. The TUNEL-positive cells were mainly spermatogonia. In flow cytometry analysis, the percentage of live cells [forward scatter count (FSC)high7-AAD-] was lower in the exposed groups than that in the controls (Figure 5A), but the decrease in viability was not statistically significant. Conclusion: Continuous exposure to ELF EMF may induce testicular germ cell apoptosis in mice.