The electrochemical behavior of the film of single wall carbon nanotube(SWNT) functionalized with carboxylic acid group was studied extensively at the glassy carbon(GC) electrode. One stable couple of waves correspond...The electrochemical behavior of the film of single wall carbon nanotube(SWNT) functionalized with carboxylic acid group was studied extensively at the glassy carbon(GC) electrode. One stable couple of waves corresponding to the redox of the carboxylic acid group, which was supported by the IR experiments, was observed. The electrode process involved four electrons, while the rate determining step was a one-electron reduction. The SWNT film modified electrode showed nice electrocatalytic behaviors toward the oxidations of some biomolecules such as dopamine, epinephrine and ascorbic acid.展开更多
Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient e...Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.展开更多
Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient ...Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
文摘The electrochemical behavior of the film of single wall carbon nanotube(SWNT) functionalized with carboxylic acid group was studied extensively at the glassy carbon(GC) electrode. One stable couple of waves corresponding to the redox of the carboxylic acid group, which was supported by the IR experiments, was observed. The electrode process involved four electrons, while the rate determining step was a one-electron reduction. The SWNT film modified electrode showed nice electrocatalytic behaviors toward the oxidations of some biomolecules such as dopamine, epinephrine and ascorbic acid.
文摘Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.
基金supported by the National Key Research and Development Program (no.2016YFA0202500)National Basic Research Program of China (2015CB932500)the Natural Scientific Foundation of China (nos.21306102 and 21422604)
文摘Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.