随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该研究提出了一种基于YOLOv5(you on...随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该研究提出了一种基于YOLOv5(you only look once version 5)模型的OMM-YOLO(ostreatus measure modle-YOLO)平菇目标检测与分类模型。通过在YOLOv5模型的Backbone层添加注意力模块,对输入的平菇图像特征进行动态加权,以获得更详细的特征信息,并在Neck层采用加权双向特征金字塔网络,通过与不同的特征层融合,提高算法的平菇目标检测的精度。此外,为了改善算法的准确性和边界框纵横比的收敛速度,该文采用了EIoU(enhanced intersection over union)损失函数替代了原有的损失函数。试验结果表明,与原始模型相比,改进模型OMM-YOLO对成熟平菇、未成熟平菇和未生长平菇的平均精度均值分别提高了0.4个百分点、4.5个百分点和1.1个百分点。与当前主流模型Resnet50、VGG16、YOLOv3、YOLOv4、YOLOv5m和YOLOv7相比,该模型的精确率、召回率和检测精度均处于优势,适用于收集现代化菇房中的平菇信息,有效避免了平菇之间因相互遮挡而产生的误检测现象。菇房平菇目标检测可以自动化地检测平菇的数量、生长状态等信息,帮助菇房工作人员掌握菇房内的菇况,及时调整温湿度等环境条件,提高生产效率,并且对可以对平菇进行质量控制,确保平菇产品的统一性和品质稳定性。同时可以减少对人工的依赖,降低人力成本,实现可持续发展,对智能化现代菇房建设具有积极作用。展开更多
针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,...针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。展开更多
针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Fo...针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。展开更多
文摘随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该研究提出了一种基于YOLOv5(you only look once version 5)模型的OMM-YOLO(ostreatus measure modle-YOLO)平菇目标检测与分类模型。通过在YOLOv5模型的Backbone层添加注意力模块,对输入的平菇图像特征进行动态加权,以获得更详细的特征信息,并在Neck层采用加权双向特征金字塔网络,通过与不同的特征层融合,提高算法的平菇目标检测的精度。此外,为了改善算法的准确性和边界框纵横比的收敛速度,该文采用了EIoU(enhanced intersection over union)损失函数替代了原有的损失函数。试验结果表明,与原始模型相比,改进模型OMM-YOLO对成熟平菇、未成熟平菇和未生长平菇的平均精度均值分别提高了0.4个百分点、4.5个百分点和1.1个百分点。与当前主流模型Resnet50、VGG16、YOLOv3、YOLOv4、YOLOv5m和YOLOv7相比,该模型的精确率、召回率和检测精度均处于优势,适用于收集现代化菇房中的平菇信息,有效避免了平菇之间因相互遮挡而产生的误检测现象。菇房平菇目标检测可以自动化地检测平菇的数量、生长状态等信息,帮助菇房工作人员掌握菇房内的菇况,及时调整温湿度等环境条件,提高生产效率,并且对可以对平菇进行质量控制,确保平菇产品的统一性和品质稳定性。同时可以减少对人工的依赖,降低人力成本,实现可持续发展,对智能化现代菇房建设具有积极作用。
文摘针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。
文摘针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。