The EIGamal algorithm, which can be used for both signature and encryption, is of importance in public-key cryptosystems. However, there has arisen an issue that different criteria of selecting a random number are use...The EIGamal algorithm, which can be used for both signature and encryption, is of importance in public-key cryptosystems. However, there has arisen an issue that different criteria of selecting a random number are used for the same algorithm. In the aspects of the sufficiency, necessity, security and computational overhead of parameter selection, this paper analyzes these criteria in a comparative manner and points out the insecurities in some textbook cryptographic schemes. Meanwhile, in order to enhance security a novel generalization of the EIGamal signature scheme is made by expanding the range of selecting random numbers at an acceptable cost of additional computation, and its feasibility is demonstrated.展开更多
Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certai...Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certain mathematical problems on non-commutative algebraic structures until now. In this background, Majid Khan et al.proposed two novel public-key encryption schemes based on large abelian subgroup of general linear group over a residue ring. In this paper we show that the two schemes are not secure. We present that they are vulnerable to a structural attack and that, it only requires polynomial time complexity to retrieve the message from associated public keys respectively. Then we conduct a detailed analysis on attack methods and show corresponding algorithmic description and efficiency analysis respectively. After that, we propose an improvement assisted to enhance Majid Khan's scheme. In addition, we discuss possible lines of future work.展开更多
基金Supported by National Natural Science Foundation of China (No. 60272011) and the Special Fund for Cultivating Excellent Scholars of Beijing Municipality (No.20042D0500103)
文摘The EIGamal algorithm, which can be used for both signature and encryption, is of importance in public-key cryptosystems. However, there has arisen an issue that different criteria of selecting a random number are used for the same algorithm. In the aspects of the sufficiency, necessity, security and computational overhead of parameter selection, this paper analyzes these criteria in a comparative manner and points out the insecurities in some textbook cryptographic schemes. Meanwhile, in order to enhance security a novel generalization of the EIGamal signature scheme is made by expanding the range of selecting random numbers at an acceptable cost of additional computation, and its feasibility is demonstrated.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61303212,61170080,61202386)the State Key Program of National Natural Science of China(Grant Nos.61332019,U1135004)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91018008)Major State Basic Research Development Program of China(973 Program)(No.2014CB340600)the Hubei Natural Science Foundation of China(Grant Nos.2011CDB453,2014CFB440)
文摘Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certain mathematical problems on non-commutative algebraic structures until now. In this background, Majid Khan et al.proposed two novel public-key encryption schemes based on large abelian subgroup of general linear group over a residue ring. In this paper we show that the two schemes are not secure. We present that they are vulnerable to a structural attack and that, it only requires polynomial time complexity to retrieve the message from associated public keys respectively. Then we conduct a detailed analysis on attack methods and show corresponding algorithmic description and efficiency analysis respectively. After that, we propose an improvement assisted to enhance Majid Khan's scheme. In addition, we discuss possible lines of future work.