Lung cancer is one of the leading causes of death with one of the lowest survival rates. However, a subset of lung cancer patients who are of Asian origin and carry somatic mutations in epidermal growth factor recepto...Lung cancer is one of the leading causes of death with one of the lowest survival rates. However, a subset of lung cancer patients who are of Asian origin and carry somatic mutations in epidermal growth factor receptor or EGFR have responded remarkable well to two tyrosine kinase inhibitors, gefitinib and erlotinib. While EGFR mutation profiles have been reported from Japan, South Korea, and Taiwan, there is no such report from mainland of China where the largest pool of patients reside. In this report, we identified ten somatic mutations from a total of 41 lung cancer patients in China. Among them, seven mutations were found in 17 adenocarcinomas. In contrast to previous reports, eight of these mutations are deletions in exon 19 and two of these deletions are homozygous. These results suggest that a large portion of Chinese adenocarcinoma patients could benefit from gefitinib or erlotinib. This unique mutation profile provides a rationale to develop the next generation of EGFR inhibitors more suitable for the Chinese population.展开更多
Since the discovery that non-small cell lung cancer(NSCLC) is driven by epidermal growth factor receptor(EGFR) mutations, the EGFR tyrosine kinase inhibitors(EGFR-TKIs, e.g., ge fi tinib and elrotinib) have been effec...Since the discovery that non-small cell lung cancer(NSCLC) is driven by epidermal growth factor receptor(EGFR) mutations, the EGFR tyrosine kinase inhibitors(EGFR-TKIs, e.g., ge fi tinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation(T790M), activation of alternative pathways(c-Met, HGF, AXL), aberrance of the downstream pathways(K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway(BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette(ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies.展开更多
基金supported by the GIBH funds provided by the Chinese Academy of Sciences,the City of Guangzhou and Guangdong Province
文摘Lung cancer is one of the leading causes of death with one of the lowest survival rates. However, a subset of lung cancer patients who are of Asian origin and carry somatic mutations in epidermal growth factor receptor or EGFR have responded remarkable well to two tyrosine kinase inhibitors, gefitinib and erlotinib. While EGFR mutation profiles have been reported from Japan, South Korea, and Taiwan, there is no such report from mainland of China where the largest pool of patients reside. In this report, we identified ten somatic mutations from a total of 41 lung cancer patients in China. Among them, seven mutations were found in 17 adenocarcinomas. In contrast to previous reports, eight of these mutations are deletions in exon 19 and two of these deletions are homozygous. These results suggest that a large portion of Chinese adenocarcinoma patients could benefit from gefitinib or erlotinib. This unique mutation profile provides a rationale to develop the next generation of EGFR inhibitors more suitable for the Chinese population.
基金supported by the National Natural Science Foundation of China (No. 81473233)
文摘Since the discovery that non-small cell lung cancer(NSCLC) is driven by epidermal growth factor receptor(EGFR) mutations, the EGFR tyrosine kinase inhibitors(EGFR-TKIs, e.g., ge fi tinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation(T790M), activation of alternative pathways(c-Met, HGF, AXL), aberrance of the downstream pathways(K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway(BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette(ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies.